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a b s t r a c t

A comprehensive and precise analysis of shale gas production performance is crucial for evaluating
resource potential, designing a field development plan, and making investment decisions. However,
quantitative analysis can be challenging because production performance is dominated by the complex
interaction among a series of geological and engineering factors. In fact, each factor can be viewed as a
player who makes cooperative contributions to the production payoff within the constraints of physical
laws and models. Inspired by the idea, we propose a hybrid data-driven analysis framework in this study,
where the contributions of dominant factors are quantitatively evaluated, the productions are precisely
forecasted, and the development optimization suggestions are comprehensively generated. More spe-
cifically, game theory and machine learning models are coupled to determine the dominating geological
and engineering factors. The Shapley value with definite physical meaning is employed to quantitatively
measure the effects of individual factors. A multi-model-fused stacked model is trained for production
forecast, which provides the basis for derivative-free optimization algorithms to optimize the develop-
ment plan. The complete workflow is validated with actual production data collected from the Fuling
shale gas field, Sichuan Basin, China. The validation results show that the proposed procedure can draw
rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for
development plan optimization. Comparing with traditional and experience-based approaches, the
hybrid data-driven procedure is advanced in terms of both efficiency and accuracy.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Over the last decade, shale gas industry has achieved great
economic success and reshaped the world energy market
(Middleton et al., 2017; Wang et al., 2014). With the rising
demanding of cleaner energy to alleviate climate change, shale gas
is expected to play an important role in the low carbon society
transition period (Bain & Company, 2021; EIA, 2021). Comprehen-
sive knowledge of the underground situation, advanced drilling
and completion technologies, and reasonable production strategies
are required to increase profitability of shale gas development
).

y Elsevier B.V. on behalf of KeAi Co
(Gregory et al., 2011; Wang et al., 2014; Zou et al., 2017).
Production performance is a vital reference for development

plan design and economic potential assessment (Kinnaman, 2011).
However, due to the collective effects of complex factors, it is
difficult to quantitatively forecast accurate production perfor-
mance. In recent years, researchers have proposed various methods
to analyze shale gas well production, including physical based
analytical and semi-analytical methods (Huang et al., 2018;
Nobakht and Clarkson, 2012; Yu et al., 2014), reservoir numerical
simulation techniques (Cipolla et al., 2010; Shabro et al., 2011; Yu
and Sepehrnoori, 2018), decline curve analysis (DCA) approaches
(Guo et al., 2016; Tan et al., 2018; Tang et al., 2021), classical data
analysis and statistical methods (Morales-German et al., 2012; Ma
et al., 2020), and data-driven machine learning and deep learning
algorithms (Kong et al., 2021; Lee et al., 2019; Mehana et al., 2021;
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Temizel et al., 2020).
Analytical and semi-analytical solutions for shale gas pro-

ductions are derived on the basis of fundamental physics laws and
fluid flow regimes. Nobakht and Clarkson studied the linear flow
behavior in hydraulic fractures under different well control sce-
narios (Nobakht and Clarkson, 2012). Ogunyomi et al. developed an
approximate analytical solution for the dual-porosity model
embedding fracture flow and matrix flow, which could be applied
across the entire stage of production (Ogunyomi et al., 2015). Huang
et al. used a dual porosity model and micro-seismic data to depict
fracture network in shale reservoir, and then used Green function
and finite difference approach to depict the flow behavior in
complex fracture systems (Huang et al., 2018). Yu et al. considered
gas desorption effect in the semi-analytical method and tested the
method with varying fracture structures (Yu et al., 2014). The flow
mechanism in shale gas is very complicated, and includes non-
Darcy flow due to inertial effects, transitional flow, slip-flow,
diffusion, adsorption, and desorption effects (Qanbari and
Clarkson, 2013). Therefore, developing a comprehensive analytical
or semi-analytical model is very challenging.

Another widely adopted approach is numerical simulation. The
method implies deriving and resolving the governing equations
with techniques such as discretization, implicit and explicit for-
mulations, and use of the finite-difference method. Shabro et al.
used a pore-scale model that incorporates the effects of no-slip and
slip flow, Knudsen diffusion, and Langmuir desorption to analyze
their individual impact on total production (Shabro et al., 2011).Wu
et al. used fieldmeasurements to construct an ensemble of complex
fracture networks and employed a modified edge-based Green
element method (eGEM) to speed up the simulation process (Wu
et al., 2021). In general, numerical simulation builds the simpli-
fied digital mirroring for a physical system by numerically solving a
series of governing equations with relevant assumptions. This
approach honors the underlying physics fundamentals, but the
simulation process may be time-consuming and coarse when the
system is highly complex.

Decline curve analysis is one of the most widely used approach
to estimate production potential. The empirical decline curve, first
introduced by Arps (1945), is constructed by fitting production to
an empirical equation to estimate the ultimate recovery. Numerous
extensions and variants have been proposed since then to improve
the applicability and robustness of the method for unconventional
resources. Cheng et al. studied the different flow regimes and
transient effect of tight and multilayer gas wells and developed a
method to decrease the error of traditional DCA (Cheng et al.,
2008). Clark et al. used a logistic growth model to predict pro-
duction for reservoirs with ultra-low permeability and applied
volumetric constraints to prevent non-physical forecast (Clark
et al., 2011). Duong discovered that for fracture-dominated flow, a
log-log plot of rate over cumulative production versus time estab-
lished a straight-line trend, and therefore can be used to estimate
production and ultimate recovery (Duong, 2011). Ogunyomi et al.
analyzed the correlation between reservoir, completion parame-
ters, and the key parameters in the empirical model to study the
physical basis of DCA models (Ogunyomi et al., 2014). Tang et al.
evaluated the performance of seven popular DCA models with field
data from Barnett and Marcellus shales, and then proposed a new
DCA method, which first transforms the production rate to a log
scale and perform nonlinear regression on production data to in-
crease the accuracy of prediction (Tang et al., 2021). In general, DCA
is an empirical method which makes predictions based on histor-
ical production data. However, the method takes limited
278
consideration of the underlying physical mechanisms.
In recent years, data-driven methods, especially machine-

learning-based data analytic approaches are widely applied, pre-
cise results are often obtained with high efficiency (Li et al., 2021).
Various machine learning algorithms have been successfully
applied for production analysis. For instance, random forest (RF),
adaptive boosting (AdaBoost), support vector machine (SVM), and
neural network (NN) methods perform well for production pre-
diction (Wang and Chen, 2019). The spatial error model (SEM) and
the regression-kriging (RK) methods help describing the impact of
design choices on well productivity (Montgomery and O'sullivan,
2017). Gang et al. implemented several tree-based methods,
including gradient boosting decision trees (GBDT) and extra trees
(ET), to analyze the controlling factors and predict the shale gas
production (Gang et al., 2021). Zhan et al. constructed neural net-
works for controlling factor evaluation and proved that the method
is of great prediction capability (Zhan et al., 2018). Besides super-
vised learning, Zhou et al. used unsupervised methods, including
principal component analysis (PCA) and K-means clustering, to
assess the impact of different factors on production performance
(Zhou et al., 2014). As for production optimization, Shelley and
Stephenson adopted artificial neural network (ANN) for well-
completion optimization to gain more well economic benefits
(Shelley and Stephenson, 2000). Nasir et al. optimized well place-
ment by integrating machine learning surrogates with two opti-
mization algorithms, the enhanced success history-based adaptive
differential evolution (ESHADE) technique and the mesh adaptive
direct search (MADS) technique. The proposed E-MADS method
outperforms the two base methods in both accuracy and efficiency
(Nasir et al., 2020).

In this study, a novel hybrid data-driven framework for shale gas
production performance analysis is developed, where dominant
factor analysis, production performance prediction, and develop-
ment plan optimization are sequentially implemented. Initially,
machine learning models and game theory methods are combined
to evaluate the dominant geological and engineering factors.
Shapley values are then calculated based on the constructed
ensemble tree models and the effects on production performance
are quantified by the tree-SHAP approximations. Then, a stacked
model is trained to predict production, where ensemble tree
models are integrated to improve model accuracy and generality.
Individual condition expectation (ICE) analysis is carried out on the
stacked model to reveal hidden patterns of shale gas development.
Finally, based on the data-driven models, the development plan is
optimized for maximum productivity by adjusting engineering
parameters with the aid of derivate-free optimizationmethods. The
optimization suggestions can provide insight and guidance for
designing shale gas development plans. A complete closed-loop
workflow embodying analysis, prediction, and optimization is
established within the proposed hybrid data-driven framework.
The obtained knowledge, models, and suggestions are constantly
updated with the enrichment of actual production data.
2. Methodology

In this section, key components for the hybrid data-driven
framework are introduced in detail, where game theory ap-
proaches, machine learning models, and optimization algorithms
are mutually combined for production performance analysis. At
last, an overall workflow integrating all the proposed procedures is
elaborated in Section 2.4.
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2.1. Ensemble tree model construction

In this study, geological, engineering and production data are
collected and cleaned through preprocessing to construct a high-
quality dataset. The goal is to build an accurate and efficient
model to predict the shale gas production performance of hori-
zontally fractured wells based upon their geological and develop-
ment conditions. Variousmodelingmethods can be applied to solve
this problem, such as linear regression models, support vector
machine regression, decision tree models, and neural networks.
Among these methods, tree-based models are relatively inter-
pretable and able to characterize complex, nonlinear relationships
between inputs and outputs. A decision tree model entails a series
of “if-then” scenarios to repeatedly split the input features and
categorizes samples into groups for the purpose of classification or
regression. To enhance the performance of a single tree, bagging
and boosting strategies are used to generate an ensemble of deci-
sion tree models (Dietterich, 2000).

Based on bagging strategies, a collection of models is built in
parallel. Training samples are selected randomlywith replacement to
build individual treemodels, so that themodels are not related to one
another. Bagging can effectively reduce model variance and mitigate
overfitting. This study uses the random forest (RF), a classical exten-
sion of the bagging method. The random forest technique trains in-
dividual tree models with random and independent sampling from
training samples and random subset of features (Breiman, 2001). The
collection of tree models, with small correlation among one another,
is combined to generate the final prediction. In contrast, boosting
entails a collectionofmodels built in series,whichmeans thatmodels
are trained sequentially with the experience learned from previous
models passed on throughout the training period. This study imple-
ments twoboosting strategies: gradient boosteddecision tree (GBDT)
and extreme gradient boosting (XGBoost) strategy. For GBDT, a series
of weak decision trees are trained at first, and subsequent trees
attempt to correct the error fromtheprevious stage by trainingon the
residual error (Hastie et al., 2001). The loss of training is minimized
with gradient descent. With this method, GBDT ensures that the
training loss is reduced at every step, but the problem of overfitting
may arise. XGBoost improved upon GBDT by adding a regularization
term to penalize model complexity and randomly selects samples to
avoid overfitting (Chen and Guestrin, 2016). In addition, GBDT uses
first-order derivative for gradient descent while XGBoost takes the
Taylor expansion of the loss function up to the second order to raise
the speed and efficiency of gradient descent.

Some important hyperparameters of tree-based models include
the number of trees, maximum tree depth, minimum number of
samples at each leaf node, subsample size, step size for gradient
descent, etc. These hyperparameters have significant influence on
model performance in terms of training and testing errors. Inap-
propriate hyperparameter setting may lead to severe overfitting or
underfitting. In this study, random search method is adopted for
model hyperparameters searching. Other optimization approaches,
e.g., Bayesian optimization as introduced in Section 2.4, can also be
used, but their applications for hyperparameter search are not the
focus of this study.
2.2. Game theory method for dominant factor analysis

The knowledge of dominant factors affecting the production
performance is vital for shale gas developing and decision making.
In past research, dominant factors are usually determined by expert
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experience, sensitivity analysis through physical modeling, and
correlation analysis through production data. Each technique has
its own drawbacks: expert experience is usually highly subjective,
physical model-based methods are restricted by various ideal as-
sumptions for analytical solutions, and numerical simulations have
high computational cost. Cross-plots and correlation coefficients
(e.g., Pearson, Spearman, Kendall coefficients) are usually adopted
for statistical analysis, but they involve little physical information
and show poor consistency in shale gas applications due to the
ignorance of cooperative effects.

Since ensemble models are constructed to connect production
performance with geological and engineering factors, dominant
factors can be directly derived by quantifying feature importance of
the tree-based models. Global importance values are calculated
from an entire dataset, where split count, gain, and permutation are
commonly usedmeasures. Split count and gain represent node split
frequency and mean decrease impurity correlated to the trees,
respectively. They are inconsistent and unreliable measures
because only the model structures are evaluated, rather than
feature contributions to the outputs. Permutation-based methods
quantify global importance by observing the changes in model's
error after randomly permuting specific feature columns (Fisher
et al., 2019). The methods are consistent but challenging to
compute, just like other model agnostic feature attribution
methods. In contrast to global importance, individualized impor-
tance is calculated for every single shale gas well and providesmore
insights to physical interpretation. However, applying model
agnostic individualized explanation methods to tree-based models
is computationally expensive.

In this study, dominant factors are studied from a game theory
perspective. Game theory is the study of mathematical models of
conflict and cooperation between intelligent rational decision-
makers (Myerson, 1991). In a coalitional game, players coordinate
their strategies and share thepayoff under the rules of a certain game.
In shale gas production, each geological and engineering factor can be
viewed as a player who makes cooperative contributions to the pro-
duction payoff within the constraints of physical laws and models.
Since the essence of the problems are identical, dominant factors can
be very well studied under the game theory framework.

A game f is a function mapping players x to the payoff, while in
this study, f is the ensemble tree model, xL are shale gas feature
data with the set of all collected geological and engineering factors
L, and the payoff is the evaluated production performance. In
cooperative games, Shapley value is one of the most powerful
measures to fairly distribute credit to each individual player
(Shapley, 1951). It assigns an importance value for each feature to
represent the effect on outputs. For arbitrary feature subset S4L,
the sub-model is retrained on xS to obtain fS. For a certain feature i,
the partial effects of withholding it can be quantified by comparing
the sub-model differences fS∪figðxS∪figÞ� fSðxSÞ. Then the Shapley
value is defined as the weighted average differences of all possible
subsets S4L\fig:

fi ¼
X

S4L\fig

jSj!ðM � jSj � 1Þ!
M!

h
fS∪fig

�
xS∪fig

�
� fSðxSÞ

i
(1)

where M ¼ jLj is the number of all features; fi represents the
marginal contribution of feature i. It can be inferred from Eq. (1)
that the Shapley value is an additive feature attribution:
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gðz0 Þ ¼ f0 þ
XM
i¼1

fiz
0
i; (2)

whereM ¼ jLj is the local explanation model; f0 ¼ f∅ð∅Þ; and z02
f0;1gM represents whether the feature is included in the model or
not. Additivity property indicates that the final output is the sum-
mation of the marginal contributions of all features. The solution is
uniquewith three desirable properties: local accuracy, missingness,
and consistency (Lundberg and Lee, 2017). These properties guar-
antee the Shapley value a rigorous measurement for feature
contribution evaluation. A card game example is discussed in
Appendix A to exhibit the standard calculation process of the
Shapley value.

However, as a model agnostic and individualized feature attribu-
tion, computational efforts for Shapley value can be very expensive,
especially for high dimensional problems since repetitively model
inferencing is required for calculating Eq. (1) with exponentially
growing complexity of possible feature subset coalitions. To address
the problem, Shapley additivity explanations (SHAP) value is pro-
posed, which is a convenient approximation of Shapley value and a
fast unifiedmeasure of feature importance (Lundberg and Lee, 2017).
There are several SHAP approximations, where tree-SHAP algorithm
isespeciallydesigned for ensemble treemodels (Lundbergetal., 2018,
2020). In this algorithm, SHAP values can be calculated in OðTLD2Þ
polynomial time, instead of OðTL2MÞ exponential time, where T , L, D
are the number of trees, leaves, and the tree depth, respectively. The
computational cost is significantly reduced and the tree-SHAP value
can be conveniently calculated for practical applications. Readers
could refer to (Lundberg et al., 2018, 2020) for more details about
theoretical proof and algorithm implementation.

In a shale gas application, tree-SHAP value matrix FN�M ¼n
f
ðnÞ
i

o
, i ¼ 1;…;M, n ¼ 1;…;N is calculated, where each element

represents the marginal contribution for the ith geological or en-
gineering factor of the nth well observation. The total effect of a
certain factor is quantified by its mean absolute contributions over
all the N wells:

hi ¼
1
N
kFik1 ¼ 1

N

XN
n¼1

���fðnÞ
i

���: (3)

hi has the same unit as the output since it quantifies the factor's
contribution. Then, dominant factors can be evaluated and sorted
by hi. In addition, supervised clustering can be performed. In
traditional unsupervised clustering, samples are clustered accord-
ing to various features with very different units or importance, say
pressure (MPa) and lateral length (ft). Distance is calculated over all
features for comparison although these features are not compara-
ble. With the SHAP values, samples are clustered based on feature
contributions, which are physically equivalent and comparable. The
supervised clustering can identify groups that share common fac-
tors from a revenue perspective and gain more insights to the
production process.

Feature contributions can be separated into interaction effects
and main effects. How a factor affects the production performance
can be studied by examining the separated effects. For arbitrary
pairwise features, their Shapley interaction index is defined as
(Fujimoto et al., 2006):

4i;j ¼
X

S4L\fi;jg

jSj!ðM � jSj � 2Þ!
2ðM � 1Þ! Vi;jðSÞ (4)
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Vi;jðSÞ ¼ fxðS∪fi; jg Þ � fxðS∪fig Þ � fxðS∪fjg Þ þ fxðSÞ; isj (5)

which represents the impacts of the pairwise features on themodel
outputs and accounts for most of the variance for Shapley values. It
can be naturally extended to approximate the interaction effects
with SHAP algorithms introduced before. By freezing each pairwise
feature and running tree-SHAP algorithms twice, SHAP interaction
value matrix of size N �M �M can be obtained in OðTMLD2Þ time.
Then according to the additivity property (Eq. (2)), SHAP main ef-
fect value of a certain feature is separated from SHAP value:

4i;i ¼ fi �
X
jsi

4i;j (6)

There is little dispersion in main effect as it represents the major
impact after removing all interaction effects. By studying SHAP
main effect value, clear patterns and quantified conclusions for
shale gas development can be obtained.
2.3. Stacked model construction for prediction

The ensemble tree models embody many excellent attributes.
These advantages can be further exploited with the stacking
strategy. Stacking, also known as stacked generalization, is one of
the most effective ensemble methods applied to improve model
performances (Breiman, 1996). The idea of stacking is proposed by
Wolpert (1992), and it has been widely applied to improve pre-
diction accuracy (Chatzimparmpas et al., 2021). In this method,
multilevel stacked models are constructed, where predictions from
low-level based models are collected and taken as inputs to
establish a high-level meta model. Though different aspects are
honored in different base models and settings, their advantages
and discrepancies can be comprehensively understood and
adjusted in the stacked model, and overall model performance is
further improved (Pavlyshenko, 2018). The general process of
stacked model construction is shown in Fig. 1.

At first, base model architectures ff ðzÞðxÞg, z ¼ 1;…; Z are
selected, where f can be of various forms, such as linear, tree, and
ensemble models. The training dataset is then divided into k equal
subsets. For a certain basemodel, f ðzÞ is trained on k� 1 subsets and
validated on the remaining subset iteratively until model pre-
dictions of thewhole dataset xðzÞ ¼ f ðzÞðxÞ are obtained, as shown in
the left half of Fig. 1. Then the k-fold cross validation outputs of all
base models ðxð1Þ;…; xðZÞÞ are collected as inputs to the high-level
stacked model F . Although the form of F is not limited, simple
linear and tree models are recommended to avoid overfitting. After
training the multi-model-fused stacked model, predictions are
made on the testing dataset. Since there are k cross validation sub-
models of base model f ðzÞ, each sub-model is inferenced with all
testing data, as shown in the right half of Fig. 1. The average of these
k predictions is taken as the integrated feature of f ðzÞ and the
procedures are repeated for all base models. Finally, these features
are collected and fed into the stacked model to obtain the pre-
dictions. In this study, three ensemble tree models are imple-
mented as base models: RF, GBDT, and XGBoost. These ensemble
models are powerful and of different characteristics as described in
Section 2.1. Their advantages are further integrated in a linear meta
model to form the high-level stacked model.

The individual conditional expectation (ICE) method can be
used to interpret the black box stacked model. As a performance-
diagnostic technique, the ICE method is developed on the basis of
partial dependence plot (PDP) method where local level interpre-
tation is studied (Friedman, 2001). ICE provides insights to global
level interpretation of the model by visualization (Goldstein et al.,



Fig. 1. Illustration of stacked model construction and prediction process. Model training process is shown on the left side and testing process on the right side.
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2015). Correlations between specific features and output pre-
dictions are displayed by several equivalent curves, surfaces, vol-
umes, etc. For the feature setL, S4L is the subset of featureswhose
impacts on outputs are to be studied, while all the other featuresL\
S are fixed through the whole process to exclude their interference.

Samples
n�

xðqÞS ; xL\S

�o
, q ¼ 1;…;Q are then generated, where

only xS are changed within rational ranges in a Cartesian product
manner. Production performance can be evaluated for each sample

through the stacked model byðqÞ ¼ Fðf ;xðqÞS Þ. With the generated Q

data pairs, ICE results are obtained by plotting byðqÞ against the co-

variate xðqÞS with fixed xL\S (Goldstein et al., 2015).When jSj ¼ 1, for
instance, only one geological or engineering factor is studied, ICE

visualization is a single curve of ðbyðqÞ; xðqÞS Þ. When two and three
factors are studied, surfaces and volumes are inspected, respec-
tively. By interpreting and analyzing the ICE results, hidden pat-
terns of shale gas development are further explored and
constructive suggestions for improvement can be proposed. How-
ever, for higher dimensionality, i.e., when more than three factors
are studied simultaneously, ICE results can hardly be visualized in a
brief and comprehensive way.
2.4. Derivative-free approaches for optimization

The purpose of optimization is to efficiently and automatically
find the optimum development plan that maximizes a designated
objective. An optimization problem for shale gas development can
be defined as follows:

u* ¼ argmax
u

FðuÞ; s:t: ul � u � uu (7)

where u4x is the subset of engineering factors to be optimized
such as stimulated length and proppant intensity; FðuÞ is the
objective function to be maximized; ul and uu are the lower and
281
upper bounds of u. The maximization problem in Eq. (7) is usually
non-convex and hard to be optimized.

Gradient-based algorithms, such as SGD, Newton's method, and
quasi-Newton methods (DFP, BFGS), are the most commonly used
optimization methods. In this study, the objective function FðuÞ is
designed as a productivity or economic indicator for the shale gas
development. It is computed by the stacked machine learning
model in Section 2.3, which is a non-linear and non-differentiable
black-box function. As a result, gradient-based optimization algo-
rithms that involve computation of the first- and second-order
derivatives of the objective function are not applicable. Therefore,
three derivative-free global optimization algorithms are integrated
in this study to solve the optimization problem in Eq. (7). In specific,
particle swarm optimization (PSO), differential evolution (DE), and
Bayesian optimization (BO) algorithms are applied.

Particle swarm optimization (PSO) is a global stochastic search
algorithm (Kennedy and Eberhart, 1995). It is a population-based
algorithm that considers a group (swarm) of particles at every
iteration, and each particle in the swarm represents a possible so-
lution to the optimization problem. At the t þ 1 iteration step,
particle p moves to a new location in the search space:

upðt þ 1Þ ¼ upðtÞ þ vpðt þ 1Þ; p ¼ 1;…; P (8)

where upðtþ1Þ and upðtÞ are the locations of particle p in the cur-
rent and previous iteration; P is the total number of particles; and
vpðtþ1Þ is the particle velocity defined by:

vpðtþ1Þ¼u vpðtÞþ c1D1

�
uPbest
p ðtÞ�upðtÞ

�
þ c2D2

�
uGbest
p ðtÞ�upðtÞ

�
(9)

where vpðtÞ is the particle velocity in the previous iteration;

uPbest
k ðtÞ is the personal-best solution of particle p up until current

iteration; uGbest
p ðtÞ is the global-best solution of all particles; u, c1,
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and c2 are the inertial, cognitive, and social hyperparameters,
which determine theweights of the three velocity components. The
stochastic nature of PSO is preserved in the diagonal matrices D1
and D2, as their diagonal elements are standard uniform random
variables and regenerated in each iteration.

Differential evolution (DE), similar to PSO, is a population-based
global stochastic search algorithm (Storn and Price, 1997). A pop-
ulation consists of P parameter vectors, and each vector represents
a feasible solution. The parameter vectors are updated in each
iteration through the mutation, crossover, and selection steps. In
mutation step, three vectors are randomly selected to generate a
mutant vector:

wpðtþ1Þ¼up1ðtÞþ J,
�
up2ðtÞ�up3ðtÞ

�
(10)

where J2½0;2� is a constant factor which controls the amplification
of the differential variation. In crossover step, the trial vector is
generated to increase the diversity:

vpðtþ1Þ¼ �
vpðtþ1Þ;…; vD;pðtþ1Þ� (11)

vd;pðt þ 1Þ ¼
�
wd;pðt þ 1Þ if randðdÞ � CR
ud;pðtÞ if randðdÞ>CR ; d ¼ 1;…;D (12)

where randðdÞ is a stand uniform random variable; and CR2 ½0;1�
represents the crossover probability. In the selection step, the trial
vector vpðtþ1Þ is compared with current solution upðtÞ using the
greedy criterion. The parameters are updated only when the orig-
inal design is improved:

upðt þ 1Þ ¼
�
vpðt þ 1Þ; if F

�
vpðt þ 1Þ �> F

�
upðtÞ

�
upðtÞ; otherwise

(13)

Bayesian optimization (BO) is a highly efficient derivative-free
and machine learning based technique to locate global optimal so-
lution according to Bayesian posterior probability. Direct derivation
of posterior probability from an objective function is impractical,
thus a surrogate is utilized instead. The surrogate is usually con-
structed by a Gaussian process (GP), whose power to express a rich
distribution relies on the covariance function. An acquisition func-
tion is defined to find the next potential optimal solution out of the
posterior probability. The solution is then added to the training
sample and the surrogate is retrained for next iteration until specific
convergence conditions are reached. The BO method is a quite
flexible framework for optimization. The expressiveness of a GP for
different distributions can be further extended by introducing
various covariance functions, such as squared exponential kernels
and Mat�ern class functions. Besides GP, various machine learning
models can also be applied for surrogate construction. There are
many alternative definitions for acquisition function, such as prob-
ability improvement, expected improvement and entropy search.
The BOmethod can be customized and modified according to actual
demand. More details and modifications can be found in (Shahriari
et al., 2016; Snoek et al., 2012).

2.5. Hybrid data-driven framework

In this study, a novel framework for shale gas production per-
formance analysis is proposed. In this hybrid data-drivenworkflow,
dominant factor analysis, production prediction and development
optimization are sequentially performed, where the machine
learning methods, game theory approaches and optimization
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algorithms introduced above are integrated in all procedures. The
flowchart of the closed-loop workflow is shown in Fig. 2.

At first, geological factors including reservoir properties, engi-
neering factors including drilling and completion data, and pro-
duction performance characterization data such as test production,
cumulative production, and estimated ultimate recovery (EUR) are
collected. The data are cleaned via preprocessing to form a high-
quality dataset, which is the foundation of the whole study. Then
ensemble tree models are trained on the prepared dataset, where
RF, GBDT, and XGBoost models are constructed in this study. We
calculate Shapley values for these three base models using the tree-
SHAP algorithm. With the Shapley values, dominant factors are
sorted by their contributions and the development patterns for a
specific factor or a production well can be studied. The multi-
model-fused stacked model is then constructed from the three
base models for production prediction. With the well-trained
stacked model, ICE curves, surfaces, and volumes are plotted to
study the effects of single, double, and triple factors on the outputs.
At last, derivative-free optimization methods are applied for
development plan optimization, where PSO, DE and BO algorithms
are compared in this study. The analysis, prediction, and optimi-
zation procedures make up a closed loop for shale gas development
study and the obtained results are iteratively validated and updated
with the enrichment of the collected field data.

3. Results and discussion

In this section, we validate the hybrid workflow proposed in
Section 2 with field data collected from the Fuling shale gas field.
Backgrounds of the studied area and basic information of the
dataset are described in Section 3.1. Dominant factors and devel-
opment patterns are analyzed in Section 3.2. Stacked model is
constructed in Section 3.3 to predict production and plot ICE vi-
sualizations. At last, development suggestions are provided by
optimizing engineering factors in Section 3.4.

3.1. Dataset preparation

The Fuling shale gas field is the first major commercial shale gas
project in China and the largest shale gas field outside North
America. The field was discovered in 2012 and put into develop-
ment in 2013. The daily gas production from the field exceeded 20
million cubic meters in 2020. Gas production mainly comes from
the high-quality marine shale in the upper Ordovician Wufeng
Formation and lower Silurian Longmaxi Formation. This study fo-
cuses on the 254 shale gas wells from the first period production
project of the Jiaoshiba area located in the southern Fuling district.
Fig. 3 shows a map overview of the Fuling field and Jiaoshiba area.
The Jiaoshiba main area can be further divided into four sectors
according to tectonic structure, fracture distribution, and resource
concentration. The main sector occupies the largest area and its
average production is the highest, while southwest sector is the
lowest. The production performance varies a lot in different sectors,
which is mainly caused by differing geologic conditions. The data
collected from the field include the geological, drilling, and
completion parameters, which are summarized in Appendix B.

Data preprocessing is the essential step to obtain high quality
dataset, which is the foundation of the following analysis. Since the
sample size is relatively small (254 samples in total), the maximum
number of input features should be limited to prevent overfitting.
The application of data preprocessing is problem-oriented and



Fig. 2. Flowchart of hybrid data-driven framework workflow.

Fig. 3. Schematic location of the Fuling shale gas field in Sichuan Basin and tectonic units of Jiaoshiba area (modified after Yang et al. (2019) and Xu et al. (2020)).
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customized for different datasets. In this study, features with many
missing values are discarded. Common data completion and
interpolation methods are not applied because they may introduce
noise and uncertainty for model constructions due to the lack of
physical control. Samples with abnormal values that deviate a lot
from the main body are discarded from the dataset. Finally
redundant features are removed in consideration of expert sug-
gestions and statistical analysis, and the Pearson correlation co-
efficients are computed for all features. A correlation heatmap for
completion and fracturing factors are shown in Fig. 4 for illustra-
tion. For instance, the 40/70 mesh sand volume is highly correlated
to the total proppant volume with a correlation coefficient over
0.90. This is because 40/70 mesh sand is the major component of
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the proppant used in the study area. The fracturing fluid volume is
highly correlated to stimulated length, stage and perforation counts
due to the nature of hydraulic fracturing. These redundant features
are discarded or integrated to generate meaningful interaction
features based on expert knowledge, such as fracturing fluid vol-
ume over stimulated length representing the fluid intensity.

The estimated ultimate recovery (EUR) is chosen as the learning
target in this study, since it is an accurate long term quantitative
indicator for production performance of shale gas. The final pro-
cessed dataset contains 245 samples, each sample consists of 13
geological and engineering factors correlated to the EUR, are
summarized in Table 1.



Fig. 4. Correlation heatmap of completion and fracturing factors.

Table 2
Factor rankings of feature importance evaluated by different methods.

Factor Pearson MIC GRA SHAP analysis

RF GBDT XGBoost

Formation depth 1 1 9 1 1 1
Hydrocarbon saturation 5 2 1 2 2 2
Pressure coefficient 2 3 8 3 4 3
Breakdown pressure 4 6 12 4 3 4
Porosity 3 4 11 5 5 5
Stimulated length 10 5 6 6 6 6
Angle to sHmin 11 12 10 7 7 7
Fluid intensity 9 9 4 8 8 12
TOC 7 8 7 9 9 10
Target layer penetration 8 10 13 10 12 11
Curvature 6 7 5 11 10 9
Stage count 12 13 2 12 13 13
Proppant intensity 13 11 3 13 11 8
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3.2. Dominant factor analysis

Machine learning models are initially trained to study the
dominant factors of EUR. Three ensemble tree models, random
forest (RF), gradient boosted decision tree (GBDT) and extreme
gradient boosting (XGBoost) models are constructed and
compared. Models are trained on 80% of the data and the remaining
20% are left for validation. Hyperparameters are tuned by random
search with 5-fold cross validation to reach higher accuracy and
avoid overfitting. The training and validation accuracy of these
ensemblemodels are summarized and further discussed in detail in
Section 3.3.

At first, we study the feature importance with traditional cor-
relation analysis. For illustration, Pearson andmaximal information
coefficient (MIC), which are typical measurements for linear and
non-linear correlations respectively, are calculated for each factor.
The grey relational analysis (GRA) coefficient, which measures the
similarities of sequences, is also computed for comparison pur-
poses. The factors are ranked according to their correlations, rep-
resenting their importance to the EUR. As shown in Table 2, the
rankings of the three methods vary a lot with each other. In fact,
such inconsistency can be frequently observed when using
different correlation-based methods to evaluate the relationships
of two variables, especially when they are not linearly correlated.
Table 1
Summary of input features and target of the dataset after preprocessing.

Category Name

Geologic Formation depth, m
TOC, %
Porosity, %
Hydrocarbon saturation, %
Tectonic curvature
Formation pressure coefficient
Breakdown pressure, MPa

Drilling Target layer penetration, %
Angel to minimum horizontal stress sHmin, degree

Completion Stimulated length, m
Stage count
Fracturing fluid intensity, m3/m
Proppant intensity, m3/m

Production EUR, 108 m3
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Moreover, mutuality effects of these factors can't be reflected in the
simple correlation coefficients. As a result, the conclusions are
usually inconsistent and misleading.

We then study the dominant factors with the aid of the game
theory method. Based on the trained machine learning models,
Shapley values for each factor in each model are calculated by the
SHAP algorithm (Fig. 5). Since the contribution to EUR is quantified
by the SHAP value, each row represents the impact of a certain
factor. The color represents the numerical value of the factor, with
red indicating high and blue indicating low. For example, according
to the RF model (Fig. 5a), the formation depth may cause at most
(�0.7e0.4)� 108m3 changes of EUR. All the factors are ranked from
top to bottom according to their influences. Comparing Fig. 5a, b
and 5c, although the models are very much different from each
other, the SHAP value distribution and tendency of each factor are
quite similar, showing that the game theory methods are robust
and consistent in this application.

We then calculate the mean absolute SHAP values (Eq. (2) to
represent the total impact of a factor, from which the dominant
factors can be ranked (Table 2). The dominant factors and their
rankings in different models are almost the same, suggesting that
geological attributions are the most important factors affecting the
shale productivity in this study area. Comparing to traditional
correlation coefficients, the SHAP analysis method shows great
consistency since it measures the contributions of each factor
rather thanmere correlations. Therefore, the results are muchmore
convincing and physically interpretable. The mean absolute SHAP
values of the first six dominant factors are shown in Fig. 6. Around
Optimizable Notes

N
N
N
N
N Representation of natural fracture development
N Formation pressure over hydrostatic pressure
N
Y
Y
Y
Y
Y Fracturing fluid volume over stimulated length
Y Proppant volume over stimulated length
e Evaluated from long term production history



Fig. 5. SHAP value summary plot for different geological and engineering factors ob-
tained from (a) RF, (b) GBDT, and (c) XGBoost models. Each dot represents the SHAP
value of a certain factor from a certain well sample.

Fig. 6. Mean absolute SHAP values for the first six dominant factors of three ensemble
models. Percentage represents the ratio of the impact of a factor to the total impact of
all factors.
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30% contribution to the EUR comes from the formation depth,
which is the most influential factor in this study area. Stimulated
length is the most significant engineering factor. These factors
contribute over 80% to the EUR in total, and their rankings are
identical in each model. As for other factors, the results are slightly
different due to the diversity and fluctuation of different models.
However, since the major components have been captured by SHAP
analysis, the slight fluctuations won't disturb the consistency and
effectiveness of the conclusions.

The EUR impact of the changing pattern for any specific factor
can be further investigated. For example, cross-plots of EUR versus
one-to-one relationships of four dominant factors are shown in
Fig. 7. Since EUR is cooperatively affected by multiple factors, we
struggle to find clear patterns or draw quantified conclusions from
these cross-plots. Then we calculate the SHAP main effect values
(Eq. (4)e(6) for each factor to reduce interferences. According to the
SHAP additivity (Eq. (2), actual contributions of each factor are
fluctuated around the EUR baseline f0 ¼ f∅ð∅Þ. For brevity, the
baseline value which is equal to mean EUR is removed in the SHAP
dependency plots (Fig. 7). The effects of these factors are clearly
displayed and instructive conclusions can be obtained. As indicated
in Fig. 7b, formation less than 2750 m deep may cause 0.3 � 108 m3

elevation of EUR over the baseline. But with the formation going
deeper, the positive effects declined immediately and turned to
negative effects. Formation over 3000 m depth may cause
0.6 � 108 m3 EUR drop down from the baseline. Shallow formation
under 2800 m is probably the most favorable zone for shale gas
accumulation and production. Hydrocarbon saturation represents
resource concentration which has significant positive effects on
EUR (Fig. 7d). But a plateau is reached after 20%, indicating that
other conditions need to be considered to further promote the
resource recovery rate. Pressure coefficient which influences the
hydraulic fracturing also exhibits similar phenomenon (Fig. 7f).
Stimulated length is the most significant completion factor in this
study area. Although numerical simulation often suggests the
longer stimulate length the better, data analysis from the field
shows that there is not much growth potential by simply pursuing
super long horizontal wells (Fig. 7h), probably due to the higher
construction costs and failure rate.

Dominant factors can also be studied for each production well.
Since the EUR output can be decomposed into the base value (equal
to mean EUR) and the summation of all SHAP values (Eq. (2)),
favorable and unfavorable factors can be directly distinguished and
quantified according to their contributions. Three representative
wells are shown in Fig. 8 for comparison. In Fig. 8a, the well con-
tains various advantages, such as shallow formation depth, low



Fig. 7. Comparisons of traditional cross-plots and the SHAP dependency plots of four dominant factors: (a, b) formation depth, (c, d) hydrocarbon saturation, (e, f) pressure co-
efficient, and (g, h) stimulated length.
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Fig. 8. SHAP explanations for the EUR of three shale gas wells in the study area. Red bar represents positive effects on EUR and its length represents the amount of contribution,
while blue represents negative.
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breakdown pressure, large porosity and hydrocarbon saturation.
These favorable factors push the EUR of this well much higher than
the regional base value. The production may be further improved if
the stimulated length can be longer since it is the major source of
negative effects. Contributions of favorable and unfavorable factors
are evenly matched in Fig. 8b, thus this well is close to the average.
Fig. 8c shows a very deep well with poor geological conditions. The
unfavorable factors greatly pull down the EUR. With our newly
devised approach and capability, one can efficiently evaluate the
status of every production well, quantitatively interpret what fac-
tors cause the production differences, and gain deeper under-
standing for the exploration and development.
3.3. Production performance prediction

In this section, a stacked model is trained to predict EUR based
on the three machine learning models trained in Section 3.2. At
first, the performances of the three base models are compared. As
shown in Fig. 9aec, the prediction and true values are centered
around the 45� line and the training and testing R2 scores are
relatively close to each other, indicating that the base models are
neither underfitting nor overfitting. Compared to RF, GBDT and
XGBoost have a better fit over the observed data. XGBoost gives the
best and generalized prediction when EUR is lower than
3.0 � 108 m3, however it can hardly handle larger EUR conditions.
Among the three models, GBDT is of the best training accuracy but
the poorest testing performance. These base models are of various
strengths and weaknesses in different aspects.

A meta model is then constructed over the base models. As
shown in Fig. 9d, the stacked model is of higher testing accuracy and
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keeps a good balance between training and testing to avoid over-
fitting. In addition to the R2 score, mean squared error (MSE) and
mean absolute error (MAE) metrics are also calculated for compari-
son. To alleviate the effects of randomness, the results are obtained
from 100 stochastic experiments. As shown in Table 3, the metrics
are consistent in model performance evaluation. The four models
perform similarly in the training process. In the testing process, the
stacked model obviously outperforms other base models. Not only
are themeanmetricsmore in linewith expectation, but the standard
deviations are also lower, indicating that the stacked model is more
stable. Trade-offs are made among the base models and their ad-
vantages are integrated in the stacked model. Therefore, the
improved stacked model is used for EUR prediction in the following
analysis which is more accurate and robust.

With the EUR prediction model, sweet spots which are mutually
governed by multiple geological and engineering factors can be
better investigated through performance-diagnostic and visualiza-
tion techniques. At first, single factor analysis is carried out with the
aid of the ICE approach introduced in Section 2.3. Three dominant
factors are studied and shown in Fig. 10, where the target factor
changes within the range of research while others remain constant.
The sweet spot for any single factor can be directly observed from the
ICE curves. In Fig. 10a, EUR increases about 20% when the pressure
coefficient is larger than 1.5, indicating that the formation pressure
larger than normal hydrostatic pressure is favorable for resource
recovery in the study area. 10%e20% hydrocarbon saturation and
4.5%e5.5% porosity are two crucial intervals where the average EUR
changes obviously. A plateau is always reached because there must
be an upper limit for the influence on EUR.

When designing the development plan, it is impossible to change



Fig. 9. EUR predictions obtained from (a) RF, (b) GBDT, (c) XGBoost, and (d) the stacked model versus true values.

Table 3
Metrics of RF, GBDT, XGBoost and the stacked model. The value represents the mean ± standard deviation of the result obtained from 100 stochastic experiments.

Model R2 score MSE MAE

Training Testing Training Testing Training Testing

RF 0.747 ± 0.011 0.652 ± 0.050 0.160 ± 0.007 0.218 ± 0.044 0.317 ± 0.008 0.371 ± 0.032
GBDT 0.858 ± 0.015 0.703 ± 0.051 0.090 ± 0.008 0.187 ± 0.041 0.221 ± 0.008 0.332 ± 0.034
XGBoost 0.810 ± 0.012 0.682 ± 0.064 0.120 ± 0.006 0.202 ± 0.061 0.256 ± 0.008 0.342 ± 0.040
Stacked 0.791 ± 0.027 0.743 ± 0.051 0.132 ± 0.015 0.161 ± 0.038 0.276 ± 0.014 0.308 ± 0.032
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one factor without altering another. For example, with stimulated
length increasing in well planning, stage count should increase as
well to facilitate fracturing operation. Thus, we further implement
multi factor analysis and start from double factors. In the ICE visu-
alization, two factors and the corresponding predictions form a
surface in the spanned space. Fig. 11a shows the joint effect of fluid
intensity and stimulated length on EUR. The ICE surface is projected
to multiple curves for the convenience of observation. The EUR
gradually improves by cooperatively increasing these two factors
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and a bottleneck is reached when stimulated length is longer than
1500 m and fluid intensity is larger than 27 m3/m. It reminds us that
there is little benefit to continuously strengthen these two factors.
Attention should be paid to other potential factors such as stage
count (Fig. 11b and c). In such situation, double factor analysis won't
meet the demand, thus we need to perform triple factor analysis.

An ICE volume is formed by the triple factors and the corre-
sponding EUR predictions, which can be projected to surfaces for
illustration. As shown in Fig. 12, the best EUR is reached when the



Fig. 10. ICE curves of single factor analysis for (a) formation pressure coefficient, (b)
hydrocarbon saturation, and (c) porosity. Each dot represents a sample from training
dataset and the curve passing through depicts the predicted EUR trend with the target
factor changing. The red curve represents the domain average.

Fig. 11. Projected curves of ICE surface for double factor analysis. Pairwise factor
combinations among fluid intensity, stimulated length and stage count are studied.
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Fig. 12. Projected surfaces of ICE volume for triple factor analysis. Fluid intensity and
stimulated length change with stage count being (a) 15, (b) 20, and (c) 25.

Fig. 13. Evolution of EUR with model inference times growing for a single well using
three derivative-free optimization algorithms.
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stage count is 25 with fluid intensity and stimulated length in their
favorable zone. However, it is probably not the best choice in
consideration of cost, benefit and efficiency. Modifications are
recommended to bemade in the areawhere the slope is large, since
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a small investment may bring significant production elevation.
With the aid of the performance diagnosis, one can set proper ex-
pectations for development plan implementation and allocate re-
sources heuristically. In conclusion, the visualization techniques
provide more insights to sweet spot identification and develop-
ment evaluation.

Nevertheless, when it comes to development plan optimization,
the performance-diagnostic technique is very much restricted,
especially when more factors are involved simultaneously. On the
one hand, the cost of exhaustive search in the high dimensional
space is very expensive. On the other hand, the results can hardly be
visualized in an intuitive and comprehensive way. Therefore, proper
optimization algorithms need to be applied to address this problem.

3.4. Development plan optimization

In this section, we implement and test the performance of the
three optimization algorithms mentioned in Section 2.4.
Throughout our study, the same set of hyperparameters for each
optimization algorithm are used. For PSO, swarm size P is set as 10,
u, c1, and c2 are 0.729, 1.494, and 1.494, respectively. These values
demonstrate good performance in a wide range of problems. For
DE, the population size P is also set as 10, and the crossover con-
stant is 0.7. For BO, a Gaussian process is used to construct the
surrogate and expected improvement is used as the acquisition
function. Meta optimization is omitted since the problem is rela-
tively simple

We apply PSO, DE, and BO to optimize five engineering pa-
rameters of the hydraulic fracturing design: stimulated length,
stage count, fracturing fluid intensity, proppant intensity, and angle
to the minimum horizontal stress (angle to sHmin). The optimiza-
tion problem aims at maximizing the EUR of each single well. For
illustration, how EUR evolves with model inference times growing
for a single well is shown in Fig. 13. The three algorithms converge
rapidly and reach similar optimization targets.

For comparison, we test the optimization performance with
low-EUR wells from both the main and non-main sectors in the
Jiaoshiba area. The EURs are lower in the non-main sector due to
the inferior geologic conditions. The optimization results for main
and non-main sectors are summarized and compared to the orig-
inal designs in Tables 4 and 5, respectively. The fracturing operation



Table 4
Comparison of the average values of the original hydraulic fracturing design and the optimized designs in the main sector. The last row represents the average changes of the
optimized designs to the original ones.

Design Stimulated length, m Stage count Fluid intensity, m3/m Proppant intensity, m3/m Angle to sHmin, degree EUR, 108 m3

Original 1444.2 19 26.1 0.62 0.5 0.86
BO 1913.0 28 29.4 1.09 8.5 1.24
PSO 1926.8 29 29.0 0.83 1.6 1.30
DE 1766.6 28 30.4 0.76 6.7 1.31

Average change þ29.4% þ49.1% þ13.4% þ44.1% � 11.2 þ49.2%

Table 5
Comparison of the average values of original hydraulic fracturing design and the optimized designs in the non-main sector. The last row represents the average changes of the
optimized designs to the original ones.

Design Stimulated length, m Stage count Fluid intensity, m3/m Proppant intensity, m3/m Angle to sHmin, degree EUR, 108 m3

Original 1364.4 17 23.4 0.58 15.0 0.34
BO 1948.6 30 32.6 1.37 2.6 0.47
PSO 1914.5 30 32.3 1.12 1.0 0.48
DE 1899.4 27 30.5 0.98 4.7 0.48

Average change þ40.8% þ70.6% þ52.5% þ99.4% �81.6% þ39.3%

Fig. 14. Radar charts of the original and optimized engineering parameters for low-EUR wells from (a) main and (b) non-main sectors using three optimization algorithms.
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is intensified but the engineering parameters are adjusted in
different manners. Improvement strategies for both sectors are
visualized and compared in Fig. 14. For the main sector, the angle to
sHmin and stage count are increased the most, and the result sug-
gests that the average EUR could potentially increase by 49.2%.
Noting that even though angle to sHmin is increased by a factor of
11.2, the absolute increasement is relatively small. For the non-
main sector, the angle to sHmin is decreased, and proppant in-
tensity are increased the most, where EUR could increase by 39.3%.
The three algorithms always reach similar optimization targets, but
the fracturing designs are slightly different due to the local maxima,
fluctuation and nonconvexity of the searching space.

The optimal set of engineering parameters can be effectively
searched out of a large number of possible combinations with
derivative-free optimization algorithms. Customized optimization
suggestions are proposed for each single well in consideration of
the specific geologic conditions and the interactions among
different engineering parameters. Although the algorithms require
repetitive computations of the objective function, the optimization
process is highly efficiently with credit to the machine learning-
based model, which provides instant inference for EUR prediction.
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4. Conclusions

In this research, a novel hybrid data-driven framework is pro-
posed for shale gas production performance analysis, prediction
and optimization. At first, dominant geological and engineering
factors are analyzed and quantified by game theory method. Then a
stacked model embodying multi machine learning models are
trained for production prediction. At last, suggestions for produc-
tion enhancement are proposed by optimizing the trained model.
The complete workflow is validated with actual field data from the
Fuling shale gas field. According to the analysis results, the
following conclusions are drawn:

(1) Dominant factors can be quantitatively evaluated and ranked
by SHAP analysis in the proposed framework. Compared to
traditional methods, the proposed method is much more
informative and interpretable. Factor impacts on production
can be clearly depicted for not only the whole region but also
each production well, with which one can gain more en-
lightenments to shale gas exploration and development.
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(2) The stacked model is capable of making accurate predictions
for production wells in various geological and engineering
conditions. On its basis, the changing patterns can be further
diagnosed and visualized by ICE method. One can directly
identify potential sweet spots and favorable engineering
designs from the ICE curves, surfaces and volumes. The
intuitive visualizations can provide instrumental reference
for resource evaluation and recovery.

(3) Optimal engineering parameters can be efficiently obtained
by derivative-free optimization algorithms. The parameters
are optimized cooperatively to find the global optimal solu-
tion. The method provides customized suggestions for each
well to realize their maximal potential. One can acquire
useful insights for estimating potential production and
improving the practice in developing plan design.

Compare to traditional analysis approaches which are ambig-
uous and obscure, the proposed analysis framework is compre-
hensive and quantitative, from which much more informative and
interpretable conclusions can be drawn. For example, in the Fuling
shale gas case, we can conclude from the analysis results that
geological factors such as formation depth, hydrocarbon saturation,
and pressure have greater impacts on the EUR. Stimulated length is
the most significant engineering factor. The quantitative results
reveal that the effects of most factors always reach a plateau or a
peak at some favorable intervals, rather than monotonically
increasing or decreasing as expected in traditional qualitative
analysis. Note that the data-driven framework is not restricted to
production performance analysis for shale gas. Through some
modifications, the method can be further applied for cost and profit
accounting, investment decision, etc. for different type of resources.
Further research will be carried out in our future works.
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Fig. A1. Example of a simple three-player coalitional card game.
Appendix A. Example of Shapley value calculation

A simple card game example is shown in Fig. A1 to exhibit the
standard calculation process of Shapley value (Michael, 2020).
Three players cooperative with each other to make a total payoff.
How to allocate the money fairly according to the practical
contribution of each player is the key problem. If no player is
involved, no payoff is obtained f∅ ¼ $0. When each player plays
individually, their contributions are given as fA ¼ $7; fB ¼ $4; and
fC ¼ $6. When two players play together, we have fAB ¼ $7; fAC ¼ $

15; and fBC ¼ $9. When three players are all participated, a total
payoff fABC ¼ $19 can be made. According to Eq. (1), the Shapley
value for player A is:
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fA ¼ 0!ð3� 0� 1Þ!
3!

ðfA � f∅Þ *S ¼ f∅g

þ1!ð3� 1� 1Þ!
3!

ðfAB � fBÞ *S ¼ fBg

þ1!ð3� 1� 1Þ!
3!

ðfAC � fCÞ *S ¼ fCg

þ2!ð3� 2� 1Þ!
3!

ðfABC � fBCÞ *S ¼ fB;Cg
¼ $7:7;

(A1)

which represents the marginal contribution of player A. Similarly,
Shapley value for player B and C can be obtained: fB ¼ $3:2, fC ¼
$8:2. According to the additivity property illustrated in Eq. (2), we
have:

gðz0 Þ ¼ f0 þ
P

i¼fA;B;Cg
fiz

0
i

¼ f∅ þ fA þ fB þ fC
¼ $0þ $7:7þ $3:2þ $8:2
¼ fABC

(A2)

where z0 ¼ f1;1;1g representing the three players are all involved.
Then the total payoff should be fairly assigned to each player ac-
cording to their marginal contributions quantified by Shapley
values. The simple case validates that Shapley value is a powerful
attribution for revenue allocation and model explanation.



J. Meng, Y.-J. Zhou, T.-R. Ye et al. Petroleum Science 20 (2023) 277e294
However, in practical applications, the conditional payoff (e.g.,
fA; fBC) is rarely explicitly given but requires repetitive model
running. In theory, 2M model differences have to be computed
whereM is the number of players or input features. For example, in
this simple three-player card game, 23 ¼ 8 conditional payoff states
are required for Shapley value calculation. When there are more
players or features involved, the exponentially increased compu-
tational efforts will be unaffordable. Thus, the Shapley additive
explanation (SHAP) value is a necessary alternative and approxi-
mation to Shapley value, which can be efficiently computed
without running models exhaustedly. There are several model type
specific SHAP approximations for different situation, including
kernel SHAP, linear SHAP, low order SHAP, max SHAP, deep SHAP,
and tree SHAP (Lundberg et al., 2018, 2020; Lundberg and Lee,
2017). It can be proved that the above methods are the only
possible consistent, locally accurate methods that obey the miss-
ingness property and uses conditional dependence to measure
missingness (Lundberg et al., 2018).

Appendix B. Summary of raw data collected from the first
period production project of Jiaoshiba area, Fuling shale gas
field
Category Name

Geologic Formation depth, m
TOC, %
Gas content, m3/ton
Porosity, %
Permeability, mD
Hydrocarbon saturation, %
Methane saturation, %
Gas saturation, %
Quartz content, %
Formation pressure, MPa
Tectonic curvature
Initial pressure, MPa
Breakdown pressure, MPa
Sector

Drilling Well name
Latitude
Longitude
TVD, m
Kelly bushing, m
Lateral length, m
Layer 1 penetration, %
Layer 2 penetration, %
Layer 3 penetration, %
Elevation change between heel-toe,
Angel to sHmin, degree
ROP, min/m

Completion Stimulated length, m
Stage count
Perforation count
Slick water volume, m3

Gel volume, m3

Fracturing fluid volume, m3

100 mesh volume, m3

40/70 mesh volume, m3

30/50 mesh volume, m3

Proppant volume, m3

ISIP, MPa
Production performance Peak test production, 104 m3

Absolute open flow, 104 m3

Casing pressure, MPa
3-month cumulative production, 104

6-month cumulative production, 104

12-month cumulative production, 10
EUR, 108 m3
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