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a b s t r a c t

Microseismic monitoring provides a valuable tool for evaluating the effectiveness of hydraulic fracturing
operations. However, robust detection and accurate location of microseismic events are challenging due
to the low signal to noise ratio (SNR) of their signals on seismograms. In a downhole monitoring setting,
P-wave polarization direction measured from 3-component records is usually considered as the back-
azimuth of the microseismic event, i.e., the direction of the event. The direction and arrival time dif-
ference between the P and S waves is used to locate the seismic event. When SNR is low, an accurate
estimate of event backazimuth becomes very challenging with the traditional covariance matrix method.
Here we propose to employ a master event and use a grid search method to find the backazimuth of a
target event that maximizes the dot product of the two backazimuthal vectors of the master and target
events. We compared the backazimuths measured with the proposed grid-search and the conventional
covariance-matrix methods using a large synthetic dataset. We found that the grid-search method yields
more accurate backazimuth estimates from low SNR records when measurements are made at single
geophone level. When array data are combined, the proposed method also has some advantage over the
covariance-matrix method, especially when the number of geophones is low. We also applied the
method to a microseismic dataset acquired by a hydraulic fracturing project at a shale play site in
southwestern China and found that the relocated microseismic events tend to align along existing faults
more tightly than those in the original catalog.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Microseismic monitoring has been the primary technique for
diagnosing hydraulic fracturing treatments over the past decade
(Warpinski, 2009; Maxwell et al., 2010; Zhao et al., 2014). The basic
idea of this technique is using the spatial distributions of the
stimulated microseismic events to infer the geometry of the hy-
draulic fractures and calculate the stimulated reservoir volume
(SRV) (e.g., Rutledge and Phillips, 2003; Lin andMa, 2015;Wei et al.,
2016; Heng et al., 2018). All the seismic events are important to
characterize the newly created fracture network and to quantify the
SRV. To obtain high signal to noise ratio (SNR) seismic data, a linear
y Elsevier B.V. on behalf of KeAi Co
array is installed in a vertical or subvertical borehole near to the
treatment well (Maxwell et al., 2010; Yan et al., 2013; Yang et al.,
2014). With this acquisition geometry, P-wave propagation direc-
tion and SeP differential traveltimes are used in locating micro-
seismic events (e.g., Oye and Roth, 2003; Jones et al., 2010; Yan
et al., 2013; Mao et al., 2019). Earthquake location errors are
generally related to inaccurate picks of P- and S-wave arrival times,
uncertainties in estimates of P-wave propagation direction, and
lack of detailed knowledge about the surrounding velocity struc-
ture (e.g., Zhang et al., 2013; Hirabayashi, 2016; Dai et al., 2016; Bray
and White, 2020).

In an isotropic or weakly anisotropic medium, P-wave propa-
gation direction is parallel or sub-parallel to its particle motion
direction, therefore it can be estimated from three-component (3-
C) seismic records. The linearly or elliptically polarized P-wave
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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particle motion can be estimated from solving the eigenvalues and
eigenvectors of the covariance matrix of multi-component records
of the P-wave arrival (Bataille and Chiu, 1991; Niu and Li, 2011;
Wang et al., 2016; Zhu et al., 2020). When the two horizontal re-
cords are used to construct a 2-D covariance matrix, then the major
eigenvector (associated with the large eigenvalue) direction rep-
resents the backazimuthal direction, i.e., the backazimuthal vector.
In the 3-D case, the eigenvector with the largest eigenvalue con-
stitutes the propagation direction, including the backazimuthal
direction and the incident angle in the horizontal and vertical
planes, respectively. Hereinafter, we refer to this method as the
covariance-matrix (CM) based method.

When noise is present in seismic records, the P-wave particle
motion is always distorted from a linear or near-linear motion,
leading to a deviation between the directions of wave propagation
and the estimated eigenvector (Jurkevics, 1988; Bataille and Chiu,
1991). The deviation could be significant when SNR of the P-wave
is low. Most of microseismic events induced by hydraulic fracturing
are small ruptures, which radiate little seismic energy and register
at stations as weak P-wave arrivals with a SNR < 1, whereas the
accurate locations of these microseismic events are crucial for
quantifying the spatial extent and complexity of hydraulic fractures
(Williams-Stroud et al., 2013).

To reduce noise induced errors in the CM method, Jurkevics
(1988) extended the single station-based technique to multiple 3-
C sensors in an array configuration by averaging covariance
matrices of different sensors. This CM stacking method can lead to
1/N reduction in the estimation variance where N is the number of
the sensors. Meng et al. (2018) proposed an improved match and
locate technique (iMLT), which incorporates the relative azimuth
between the target event and template (master) event calculated
with the CM method to the Match & Locate method (M&L) (Zhang
andWen, 2015), to improve event locationwith a vertical array. The
relative azimuth between the target andmaster events is computed
from their absolute backazimuth angles estimated with the single
station CM method. Hence estimation error in relative azimuth
could be worse than the large noise-induced errors in the absolute
back azimuths due to error propagation. Li et al. (2013) proposed to
employ cross-correlations of the two earthquakes to compute the
differential backazimuth angle, which can be written as

Dq ¼ q� q0 ¼ tan�1

Z t2

t1
fE0ðtÞNðtÞ � N0ðtÞEðtÞ gdtZ t2

t1
fN0ðtÞNðtÞ þ E0ðtÞEðtÞ gdt

; (1)

where (E0ðtÞ; N0ðtÞ) and (EðtÞ; NðtÞ) are the east- and north-
components of the master and target events, respectively. The P-
wave arrivals of the two events are aligned and [t1, t2] defines the
time window of the P-wave arrivals. It should be noted that Eq. (1)
was derived under the assumption of noise free data. However, we
will show that it is valid even when uncorrelated (between
different recording components and times) noise is present.
Therefore, this method providesmore accurate estimates of relative
backazimuth when a single 3-C record is used. In this work, we
propose a grid search method (GS) to estimate relative back-
azimuth angle between a pair of events by maximizing the dot
product of their backazimuthal vectors.

The paper is organized as follows: we first describe the equa-
tions of CM and GSmethods in a single station setting and a vertical
array configuration in section 2. We then benchmark the two
methods as well as the multi-component cross-correlation method
(hereafter Li2013) using synthetic records of a large set of micro-
seismic events in section 3. In section 4, we applied the proposed
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GSmethod to the microseismic dataset of Meng et al. (2018), which
was acquired in a hydraulic fracturing project at a shale play site in
southwestern China. Relocated seismicity with the GS measure-
ments is compared to the results of Meng et al. (2018) and then
further discussed.
2. Methodology

2.1. The covariance matrix method

As stated above, the CM method is based on the fact that
propagation direction is parallel or sub-parallel to its particle mo-
tion direction when it traverses an isotropic or weakly anisotropic
medium. A 3-D (e.g., Jurkevics, 1988) or 2-D (e.g., Niu and Li, 2011)
covariance matrix is usually set up and the rectilinear particle
motion direction is estimated through the eigenvector associated to
the major eigenvalue. Here we employ the two horizontal com-
ponents (E(t), N(t)) to define a 2-D covariance matrix:

CS ¼

0BBBBBBB@

Zt2
t1

EðtÞEðtÞdt
Zt2
t1

EðtÞNðtÞdt

Zt2
t1

EðtÞNðtÞdt
Zt2
t1

NðtÞNðtÞdt

1CCCCCCCA ¼
�
cEE cEN
cEN cNN

�
(2)

Likewise, [t1, t2] defines the time window of P-wave. By solving
the eigenproblem of the 2-D covariance matrix (Eq. (2)), the azi-
muth of the major eigenvector 4 can be expressed as:

4¼ cot�1
cNN � cEE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcNN � cEEÞ2 þ 4c2NE

q
2cNE

; (3)

which is measured clockwise from the north. It can be shown that
4 ¼ q or 4 ¼ q ± 180� (0� � 4,q < 360�, Fig. 1a) when noise is absent,
where q denotes the true backazimuth of the event. However, when
noise is present, 4 differs from q and is given by

cot 4 ¼ cot qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h cos 2 qþ h2

p
� h� 1

sin 2 q
; h

¼ sin 2 q

SNR2E � 1
� cos 2 q

SNR2N � 1
; (4)

where SNRE and SNRN are the signal to noise ratios (SNR) of the E-
and N-component of seismic recordings, respectively.

For the case of seismic array with a total number of N 3-C sen-
sors, we defined the covariancematrix of the array by averaging the
correlations of each sensor as (Jurkevics, 1988)

CA ¼ 1
N

0BBBBB@
XN
i¼1

Zti2
ti1

E
�
iðtÞE

�
iðtÞdt

XN
i¼1

Zti2
ti1

E
�
iðtÞN

�
iðtÞdt

XN
i¼1

Zti2
ti1

E
�
iðtÞN

�
iðtÞdt

XN
i¼1

Zti2
ti1

N
�
iðtÞN

�
iðtÞdt

1CCCCCA (5)

where ~EiðtÞ and ~NiðtÞ indicate the E- and N-components of the i-th

sensor normalized by
Zti2
ti1

fEiðtÞ þ NiðtÞ g2dt, and [ti1, ti2] is the P-

wave time window of i-th sensor. Since all the records inside the
array are from the same event, the P-wave time windows [ti1, ti2] of



Fig. 1. Schematic diagram showing the CMmethod (a) and the GS method (b). The red star and grey triangle represent the target event and the receiver sensor, respectively. The red
arrow represents the backazimuth vector br of the target event with a backazimuth angle of q. (a) The dashed ellipse represents the P-wave particle motionwith a semi-major axis l1
in the direction bv1 (black arrow) and a semi-minor axis of l2 in the direction bv2 (grey arrow). 4 is the azimuth of the bv1 measured clockwise from the north. (b) The blue star
represents the master event, and the blue arrow represents its backazimuth vector br0 with a backazimuth angle of q0. The vector br*0 (black arrow) is obtained by rotating br0 with an
angle of a.
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different sensors are essentially the same if they are aligned. It is
noted that [ti1, ti2] can be taken differently among different sensors.
2.2. Master-event based grid searching method (GS)

Recent studies showed that template-matching techniques
employing a set of well-located high-SNR master events is an
effective way to detect and locate low-magnitude events that
resemble to proximal master events (Song et al., 2010; Van der Elst
et al., 2013; Skoumal et al., 2015; Bao and Eaton, 2016; Caffagni
et al., 2016; Zhai et al., 2020; Zeng et al., 2021). Therefore, it is a
reasonable approach to employ a master event and measure the
relative backazimuth angle of a target event with respect to the
master event. Fig. 1b presents the schematic diagram of our pro-
posed GS method. Here, br0 and br are the backazimuth unit vectors
of the master and target events, and their corresponding back-
azimuth angles are q and q0, respectively. We rotate br0 counter-

clockwise by an angle a to form a rotated unit vector br*0, and further

compute the dot product between vector br*0 and br, which is
denoted by pSðaÞ and may be expressed in the form

pSðaÞ ¼
� Zt2
t1

fE0ðtÞNðtÞ � N0ðtÞEðtÞ gdt
�
sin aþ

� Zt2
t1

fN0ðtÞNðtÞ

þ E0ðtÞEðtÞ gdt
�
cos a;

(6)

where (E0ðtÞ; N0ðtÞ) and (EðtÞ; NðtÞ) are the E- and N- components
of themaster and target events, respectively. It should be noted that
in case of uncorrelated noise among different time windows, the
cross-event correlations are expected to be less sensitive to noise
than the single-event correlations, leading to a more robust esti-
mate of a with single station records under noisy condition. It can
also be seen that pSðaÞ reaches to the maximumwhen dpSðaÞ=da ¼
0, i.e.,
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tanðaÞ ¼ tanðq� q0Þ ¼

Z t2

t1
fE0ðtÞNðtÞ � N0ðtÞEðtÞ gdtZ t2

t1
fN0ðtÞNðtÞ þ E0ðtÞEðtÞ gdt

; (7)

Eq. (7) is exactly the same as Eq. (1) proposed by Li et al. (2013).
We should emphasize that Eq. (1) was derived under the noise-free
condition, and we showed that it could be a good approximation
even low SNR records were used. In real data, noise is unlikely
perfectly random, therefore the ratio of cross-event correlations in
Eq. (7) could be off the maximum pSðaÞ. We thus conduct a grid
search of the optimum a that has the maximum pSðaÞ.

Similar to the CMmethod, we can also define a dot product for a
vertical array with N 3-C sensors:

pAðaÞ ¼
"
1
N

XN
i¼1

Zti2
ti1

�
E
�
0iðtÞN

�
iðtÞ � N

�
0iðtÞE

�
iðtÞ

�
dt

#
sin aþ

"
1
N

XN
i¼1

Zti2
ti1

�
E
�
0iðtÞE

�
iðtÞ þ N

�
0iðtÞN

�
iðtÞ

�
dt

#
cos a

(8)

where (E0i
�
ðtÞ; N0i

�
ðtÞ) and (Ei

�
ðtÞ; Ni

�
ðtÞ) represent the normalized E-

and N-component records of the master and target events recorded
by the i-th sensor. The P-wave arrivals of the two events are aligned
and [ti1, ti2] defines the time window of the P-wave arrivals at the i-
th sensor. As mentioned above, this window could be the same
among all the sensors. We also employ a grid search of a to find the
maximum pAðaÞ.

Li et al. (2013) did not mention how to integrate an array data to
compute the relative backazimuth angle. Here we simply use the
mean of all the single station measurements to compute averaged
estimate across the array, given by

DqA ¼ 1
N

XN

i¼1
Dqi; (9)
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where Dqi is defined by Eq. (1).

3. Synthetic tests

To evaluate the accuracy of the three methods, CM, GS, and
Li2013, we first apply them to 4 synthetic datasets and each one is
composed of one master event and 200 target events, which are
recorded by a vertical array with 20 3-C sensors. The source-
receiver geometry is based on a field microseismic experiment in
SW China (Meng et al., 2018, hereinafter referred to as the FEM18
dataset). More specifically, the 20 geophones are deployed at a
depth from ~2115 m to ~2400 mwith a sensor spacing of 15 m, and
the induced microearthquakes occur at ~2700 m with lateral dis-
tances of ~500 m from the geophone array. From the FEM18 data-
set, we first selected one microseismic event with a high SNR as the
master event. The event was one of the 10 template events used in
the iMLT analysis, and its seismograms at the 20 geophones were
aligned at the onset of the Pwaves, which was set to time zero. We
used the same master event among the 4 datasets. We assumed
that the P-wave arrival windows of the target events were
measured from the iMLT analysis and therefore were known. For
each target event, its seismograms at the 20 geophones were also
aligned at the onset of the P waves. It is worth noting that
computing P-wave traveltimes was not required, thus a velocity
model was not needed in our synthetic calculation.

To synthesize seismograms of the 200 target events, we first
randomly generated their source locations (hypocenters), which
are located within 150 m from the master event and with a relative
backazimuth angle between �20� and 20�. We assumed that the P-
wave propagates along the straight line between each target event
and geophone and projected the P-wave motion vectors to the Z-,
N-, and E-components. For the datasets 1 and 2, we employed the P
waveforms of the master event as the source wavelets, and for the
datasets 3 and 4, we used the P waveforms of another template
event of the FEM18 dataset as the source wavelets. We further
randomly took 200 noise windows which were also taken from the
FEM18 dataset and summed each noise window with the P-wave
arrivals. By properly scaling the noise and P-wave amplitude, we
were able to obtain 3-C synthetic seismograms of the 200 target
events in each dataset with the desired SNR. The noise windowwas
taken several times longer than the P-wave signal window. To
calculate SNR, we took a noise window prior to P-wave with a
duration twice long as the P-wave window and computed the
average energy of the noise and P-wave windows. The SNR is
defined as the square root of the average energy ratio between the
P-wave and noise windows. The first dataset was meant for large-
magnitude events, which has an average SNR of 10.6 and stan-
dard deviation of 4.9 from the N-component recordings (Table 1).
An example of the E- and N-component records is shown in Fig. 2a.

We used a window length of 0.015 s that encloses the whole P-
wave signal (see the grey shaded window in Fig. 2a) to make
backazimuth measurements. Fig. 2b shows an example of the GS
measurement, i.e., a single station dot product, pSðaÞ, as a function
of the absolute backazimuth (q0 þ aÞ. The angle corresponding to
the maximum pSðaÞ is the measured backazimuth by the GS
Table 1
List of mean and standard deviation and backazimuth residuals measured by the three m

Dataset SNR CM

E N Z S, �a A,

1 2.7 ± 1.0 10.6 ± 4.9 14.9 ± 4.1 0.0 ± 1.3 0.
2 1.0 ± 0.1 1.5 ± 0.4 1.8 ± 0.4 0.3 ± 18.3 �0
3 2.6 ± 1.0 7.9 ± 3.5 11.9 ± 2.8 0.2 ± 1.8 0.
4 1.0 ± 0.1 1.3 ± 0.3 1.6 ± 0.3 0.6 ± 28.6 �0

a S: single station; A: a hypothetical array with 20 3-C geophones.
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method (red line in Fig. 2b). Fig. 2c shows an example of particle
motion of the P-wave window (grey shaded in Fig. 2a) at one of the
20 stations. The blue line indicates the major eigenvector direction
while the black line represents the true back azimuth direction. For
each event we made 20 backazimuth measurements across the
whole array with the GS method, and we further computed their
deviations from the true backazimuth. We applied this procedure
to all the 200 events, and Fig. 2d shows the histogram of the
20 � 200 deviations by the GS method. For comparison, we also
plotted the histogram of the 20 � 200 measurements with the CM
method in Fig. 2e. In general, both methods yield very accurate
measurements with a mean close to 0.0� and a standard deviation
of less than 1.5� even with the single-station-based approach.
When the two methods were implemented in the array configu-
ration, the estimates are close to the true backazimuths of the 200
events. A zero mean value is obtained by both methods and a
standard deviation of 0.3� and 0.1� is achieved by the CM and GS
methods, respectively. For further comparison, we also made
similar measurements with the Li2013 method, and the results are
listed in the first line of Table 1. It is obvious that the measurement
accuracy of the three methods is rather similar when they are
applied to high SNR data.

The second dataset was designed for low magnitude micro-
seismic events. The average SNR is ~1.4 (Table 1). An example of the
E- and N-component records, the GS and CM single-station mea-
surements, and the histograms of the 20 � 200 measurements of
the two methods are shown in Fig. 2f-j. The array-based mea-
surements as well as estimates from the Li2013 method are all
listed in Table 1. In general, the single-station measurements from
GS and Li2013 are comparable, which are approximately one time
better than those derived from the CMmethod. For the array-based
measurements, the GS produces the smallest mean value and
standard deviation (second line of Table 1).

We have assumed that the 200 target events have the same
source wavelets as the master event in the above two datasets.
Next, we would like to test whether this assumption could affect
the results of the proposed method, as cross-event correlations are
used in computing the dot product of the backazimuth vectors. To
do so, we employed another template event, which has a source
wavelet distinctly different from the master event, to generate two
sets of 200 microseismic events with high and low SNR values,
respectively. Fig. 3 shows 7 examples of 3-C waveforms of the P-
wave arrivals with blue solid and red dotted lines indicating the
target and master events, respectively. The average cross-
correlation coefficient of the two events is 0.55. We employed the
same procedure in generating the 200 target events and their
corresponding 3-C synthetic seismograms.

Similar to dataset 1, dataset 3 was designed for large-magnitude
events with high SNR, the measurement results of the three
methods based on single-station and array configuration are listed
in the third lines of Table 1. As expected, the three methods work
well in estimating the backazimuth angles of all the events with a
standard deviation of ~1.8�e2.5� for the single-station based
measurements and ~0.2�e0.4� for the array estimates. We notice
that both themean and standard deviation values are slightly larger
ethods.

GS Li2013

�a S, �a A, �a S, �a A, �a

0 ± 0.3 �0.1 ± 1.0 0.0 ± 0.1 �0.1 ± 1.0 �0.1 ± 0.3
.6 ± 2.8 �0.3 ± 11.1 0.0 ± 1.4 �0.7 ± 11.1 �0.0 ± 3.1

2 ± 0.4 1.6 ± 2.5 0.4 ± 0.2 1.0 ± 2.4 1.0 ± 0.4
.1 ± 4.1 1.3 ± 15.8 0.7 ± 2.5 1.0 ± 17.3 1.0 ± 3.9



Fig. 2. (a) An example of the E- and N-component records of the dataset 1 with a high SNR. Grey shaded area indicate the P-wave time window used in computing the dot product,
i.e., pSðaÞ. (b) pSðaÞ is plotted as a function of the absolute backazimuth of the target event. Vertical red and black lines indicate the measured backazimuth with the GS method and
true backazimuth of the target event. For comparison, measurement with the CMmethod is shown by the vertical blue line. (c) Particle motion of the P-wave is shown in red dashed
line. Blue and black straight lines indicate the CM measurement and the true backazimuth of the target event. (d) and (e) are histograms of deviations of GS and CM single station
measurements from the true backazimuths of the 200 microseismic events. (f)e(j) are the same as (a)e(e) except for the synthetic dataset, which is the low SNR dataset 2.
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than those of dataset 1, implying that waveform similarity between
the master and the target events does have a slight influence on the
measurement accuracy. However, it is also true that dataset 3 has a
slightly lower average SNR than dataset 1, which may partly
contribute to the large mean and standard deviation values of
dataset 3. The source wavelets of the 200 microseismic events in
dataset 4 are similar to those in dataset 3, which are different from
the master event waveform. The average SNR and the measure-
ments of the three methods are listed in the fourth line of Table 1.
Compared to the measurements derived from dataset 2, the mean
and standard deviation values of the dataset 4 are both slightly
higher.

As listed in Table 1, among the three array-basedmeasurements,
our proposed GS method yields the smallest standard deviation
values in all the four datasets. To further show how the number of
3-C sensors in an array affects the measurements of the three
methods, we varied the number of stations in an array from 1 to 20
and used the two low SNR datasets (datasets 2 and 4) in the
investigation. Fig. 4a and b shows the standard deviations
2679
measured from arrays with different number of stations from the
datasets 2 and 4, respectively. It should be noted that we took the
stations sequentially from the top to the bottom in configuring
hypothetic arrays with station number from 1 to 20. Since stations
at the top are further away from the microseismicity, their seismic
records generally have lower SNR as compared to those in the
bottom of the vertical array. Therefore, measurements with the
hypothetic arrays with a small number of top stations yield higher
standard deviations than single-stationmeasurements, whichwere
averaged over the 20 stations. The standard deviations of the three
measurements all decrease with increasing station number, and
among the three the GS method gives the best measurements.
When station number is small, the advantage of the GS method
becomes significant.
4. Field data application

We have also applied the proposed GS method to a filed dataset
recorded by a 20-level geophone array installed in a deep



Fig. 3. Seven examples of 3-C records of the P waveforms of the master event (red
dotted lines) and the target events (blue solid line) used in generating datasets 3 and 4.
The waveforms of master event were also used in generating the target events of
datasets 1 and 2.

Fig. 4. The standard deviation of the backazimuth residuals (i.e., estimated backazimuth min
are computed with the estimates from the CM, GS, Li2013 methods using the low SNR dat
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monitoring well during a hydraulic fracturing operation conduced
within the Sichuan Basin in southwestern China.We first calculated
the orientation of each sensor using signals of perforation shots
fired before hydraulic injection, and then rotated the recorded data
to Z-N-E coordinate. Meng et al. (2018) applied the iMLT method to
the dataset and detected a total of 326 events. For each event, they
employed a relative location method using the relative back-
azimuth angles and SeP travel times with respective to a master
event to locate the earthquakes. The left panel of Fig. 5 shows the 3-
D locations of the 326 events (Meng et al., 2018). The relative
backazimuth of each event was computed using the single-station-
based CM method.

In this study, we recalculated the relative backazimuth angle of
each event using the array-based GSmethod.We then relocated the
326 events by incorporating the GS measurements into the iMLT
location engine. The right panel of Fig. 5 shows the relocation re-
sults. Apparently, the distribution of the events in the red ellipse is
more tightly clustered after relocation. The average Euclidean dis-
tance of the events in the ellipse to the cluster center is 39.4 m,
smaller than the 46.4 m computed from the original catalog. In
addition, the geometry of a potential fault is more clearly delin-
eated (right panel of Fig. 5), which strengths the speculation of
Chen et al. (2018) that these events are likely nested on a critically
stressed fault, which was reactivated by the hydraulic fracturing
operations.
5. Conclusions

Recent studies suggest that relative location techniques provide
better constraints on spatial distribution of microseismicity. These
techniques usually involve measurements of relative seismic
properties with respect to a master event, such as relative trav-
eltimes and relative backazimuth angles. We proposed a grid
search-based method to determine the relative angle between the
target and master events by maximizing the dot product of the
backazimuth vectors of the two events. We showed analytically
that the GS method is less sensitive to uncorrelated noise than the
traditional CM method. When noise is completely uncorrelated in
time, then our method becomes equivalent to Li2013. We investi-
gated the accuracy of our GS method using large synthetic data,
which incorporate real noise extracted from a field experiment. We
found that the GS method has a noticeable advantage over the
existing CM and Li2013 methods when applied to single station
us true backazimuth) is plotted as a function station number in an array. The residuals
aset 2 (a) and dataset 4 (b).



Fig. 5. Spatial distribution of the 326 microseismic events (blue dots) in the two vertical and one horizontal planes. (a) Original locations from Meng et al. (2018). (b) Relocated
catalog with GS estimates of event backazimuth. The thick solid black line shows the trajectory of the treatment well. Open black triangles represent the 3-C sensors in a monitoring
well. Three red ellipsoids indicate locations of three perforation shots.
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data. In case of making a single estimate by a station array, our
method still shows superior performance to the CM method, and
this advantage becomes more significant when the number of
sensors in the vertical array is small. Application the GS method to
field data also suggests that it can lead to a better location of
microseismicity.
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