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a b s t r a c t

An analytical solution in physical variable space is presented for transient gas flows during constant-rate
production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture
conductivity. The solution is based on the short-time asymptotic solution and a new approximate
transient elliptical flow solution, which covers transient flows from the bilinear flow regime to the
pseudo-radial flow regime. The solution covers the well-known asymptotic solutions in both short- and
long-time limits of bilinear and pseudo-radial flows. The analytical model provides a practical and
reliable engineering tool to evaluate the fractured reservoir properties, which can be programmed using
a spreadsheet.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Hydraulic fracturing is important for the development of the
tight gas and unconventional shale gas reservoirs. After the
completion of the hydraulic fracturing, large quantities of propents
would be needed to keep the fractures open, allowing hydrocarbon
gas to flow from the reservoir to the fractures, and on to the
wellbore and surface facilities. In this process, it is important to
evaluate the conductivity of the fractures. Transient flow from
vertically fractured wells is essential for estimating fractured
reservoir properties (Agarwal et al., 1979; Agarwal, 1980; Baker and
Ramey, 1978; Biryukov and Kuchuk, 2012; Cinco-Ley and Meng,
1988; Gringarten et al., 1975; Kuchuk and Habashy, 1997; Lee and
Holditch, 1981; Raghavan, 1977; Rushing and Blasingame, 2003;
Russell and Truitt, 1964; Valko and Economides, 1997;
Wattenbarger and Ramey,1969;Wilkinson,1989), mostly for short-
and intermediate-times as a pressure transient analysis. One of the
best-known models for such vertically fractured wells is the finite
conductivity fracture model developed by Cinco-Ley and collabo-
rators (Cinco-Ley et al., 1978; Cinco-Ley and Samaniego, 1981).
. Lu).

y Elsevier B.V. on behalf of KeAi Co
Cinco-Ley (Cinco-Ley et al., 1978) numerically solved an integral
equation to obtain the well pressure response for constant-rate
production; while Cinco-Ley and Samaniego (1981) analyzed a
simplifiedmodel and identified flow regimes such as fracture linear
flow, bilinear flow, formation linear flow, transient elliptical flow
and pseudo-radial flow, which are useful for extracting petro-
physical properties. Chen et al., (2016) applied numerical inver-
sion to solve the transient pressure solution of the mathematical
model. Tian et al., (2018) presented a new approximate semi-
analytical method for predicting performance of a finite conduc-
tivity vertical fractured gas well produced at a variable production
system. Zhang et al., (2018) developed a semi-analytical model to
describe the pressure behavior of a vertical well with fishbone
fracture pattern. And it is found that there are five flow regimes,
they are bilinear flow, flow feed, fracture linear flow, formation
linear flow, bi-radial flow and pseudoradial flow. Jiang et al., (2019)
presented a composite elliptical flow model to analyse the frac-
tured vertical well transient pressure and rate performance in
TMGR with SRV and they applied Modified Mathieu functions to
solve the mathematical model. Composite pressure transient re-
sponses model was developed to examine transient pressure
behavior of a fractured vertical well with complex hydraulic and
natural fracture networks by taking stress-sensitive effect into ac-
count (Jiang et al., 2020; Wang et al., 2017).
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Nomenclatures

ct Total compressibility of the reservoir; 1/Pa
CfD ¼ kfwf=ðkLÞ Dimensionless fracture conductivity
FE ¼ kfwf=ðkLÞ Dimensionless elliptical fracture conductivity
h Formation thickness; m
L Ellipse focal distance/fracture half-length; m
Pi;d Initial fluid pressure in the reservoir; Pa
PD ¼ Pd=pi;d Dimensionless fluid pressure in the reservoir
DP ¼ Pi;d � Pw;d Well pressure drawdown; Pa

PwD ¼ 2pkhDP
mqd

Dimensionless wellbore pressure drawdown

qd Production rate of the fractured well; m3/s

qD ¼ mqd
2pkhDP Dimensionless production rate of the fractured well

rw Wellbore radius; m
tDL ¼ kt=ðm4ctL2Þ Dimensionless time based on fracture length
x; y Cartesian coordinates; m
wf Fracture width at the wellbore; m
x;h Elliptical coordinates; dimensionless
x1 Elliptical fracture shape x ¼ x1
xe Elliptical reservoir shape x ¼ xe
k Reservoir permeability; m2

kf Fracture permeability; m2

m Fluid viscosity; Pa$s
4 Reservoir porosity; dimensionless
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Studies have shown that an elliptical shape provides a good
geometrical approximation to a hydraulic fracture, which offers
certain advantages when it comes to finding the fluid production
rate (Amini et al., 2007; Blasingame, 2008; Chen, 2016; Hale and
Evers, 1981; Kucuk and Brigham, 1979; Lu and Chen, 2016; Obut
and Ertekin, 1987; Prats et al., 1962; Riley, 1991; Riley et al., 1991;
Sun et al., 2017; Zhang et al., 2011). For an elliptical fracture with an
infinite fracture conductivity, Prats and Kucuk & Brigham (Kucuk
and Brigham, 1979; Prats et al., 1962) obtained the well pressure
for constant-rate fluid production. NGUYEN et al., 2020 proposed a
straightforward semi-analytical solution for transient pressure
behavior of multi-fractured horizontal gas wells producing from
finite-conductivity fractures. But the proposed solution is devel-
oped based on coupling the solutions of two contiguous flow
domainsdmatrix and fracturedboth of which exhibit one-
dimensional Cartesian flow. For finite fracture conductivity, Riley
(Riley, 1991; Riley et al., 1991) carried out a comprehensive
analytical study on the transient well pressure behavior for
constant-rate production in an infinitely large reservoir, focusing
on the exact analytical solution in the Laplace transform space
(“semi-analytical solution”). However, given that pseudo-steady-
state solution also includes the boundary effect, it is inappro-
priate to use a pseudo-steady-state solution to construct an
approximation to the transient elliptical flow. To investigate the
pressure transient behavior of the non-Darcy flow in composite
naturally fractured-homogeneous gas reservoirs, Nie et al., (2021)
developed a radial bi-zonal composite non-Darcy flow model
based on Izbash's Equation. In addition, the mathematical models
obtained above all require complex numerical solutions.

To the best of our knowledge, to date, there is no continuous,
practical analytical solution in real-time space available for tran-
sient flow for a vertically fractured well at finite fracture conduc-
tivity. Such an easy-to-use explicit analytical solution in real-time
space is highly desirable, as it can provide a practical tool to esti-
mate gas well productivity in shale and tight gas reservoirs after the
hydraulic fracturing (Poston and Poe, 2008).

The objective of the present paper is to fill this gap and to seek
such an approximate analytical solution in the real-time space for
transient fluid production from a fully-penetrated elliptical-shape
vertical fracture in an infinite reservoir. It is noted that it is inap-
propriate to use a pseudo-steady-state solution to construct an
approximation to the transient elliptical flow as a pseudo-steady-
state solution also includes the boundary effect. The approximate
solution proposed here is not intended to replace the existing nu-
merical simulation tools; rather it serves as an alternative: using
the derived formula allowing fast computations for additional
desired data point as well as a reliable engineering tool for rapid
evaluation of the transient well pressure in a first attempt to tackle
such a problem. The reported formula can be programed in a spread
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sheet such as Excel, even on a hand-held calculator. The new
analytical transient flow solution presented in this paper is ob-
tained by patching the short-time asymptotic solution of Jin et al.,
(2015a) with a new approximate transient elliptical flow solution
to be constructed below. This new composite solution is valid for
finite fracture conductivity and it covers nearly all flow regimes
occurring in an unbounded reservoir, from the early-time bilinear
flow to the late-time pseudo-radial flow. The solution recovers
exactly to the well-known asymptotic solutions in both the short-
time bilinear flow limit and the long-time pseudo-radial flow
limit. Moreover, this analytical model is also fully validated by the
well-documented numerical results from Riley (Riley, 1991; Riley
et al., 1991).
2. Methods and mathematical modeling

In this section, we briefly describe the asymptotic solution in
short-times for constant rate production given by Jin (Jin et al.,
2015a, 2015b), which will be used in constructing the new com-
posite solution.

Fig. 1 shows the production from a fully-penetrated vertically-
fractured well. To derive the analytical model, the following as-
sumptions are made: (1) the reservoir fluid is a single-phase fluid
residing in a homogeneous medium with its motion governed by
Darcy's law in both the reservoir and the fracture; (2) the fluid and
the reservoir are weakly compressible, characterized by a single
lumped total compressibility constant ct; (3) the effects of wellbore
storage and skin are negligible; and (4) the hydraulic fracture is
supported by propants and it can be considered as incompressible.
The vertical hydraulic fracture is modeled as a thin, long ellipse
intersecting the wellbore with a fracture width wf at wellbore,
which is much smaller than the wellbore diameter. In the elliptic
coordinates, the surface of the elliptical-shape fracture is repre-
sented by the ellipse x ¼ x1, with x1 being a small number. The
Cartesian coordinates ðx; yÞ and the elliptic coordinates ðx; hÞ are
related by x ¼ Lcoshxcosh; y ¼ Lsinhxsinh, with L being essentially
the fracture half-length, and L[wf . Subscript “f” is used for frac-
ture quantities. The permeabilities in the reservoir and the hy-
draulic fracture are k;kf , respectively, with k≪kf . The dimensionless
elliptical fracture conductivity FE ¼ kfwf=ðkLÞ is related to the
rectangular fracture conductivity CfD by CfD ¼ pFE=4 (Prats, 1961).

The reservoir initial pressure Pi;d and the pressure diffusion time
scale are selected as the characteristic pressure and characteristic
time for non-dimensionalization: Pc ¼ Pi;d; tc ¼ m4ctL2=k, where m;
4 are the fluid viscosity and reservoir porosity, respectively. The
dimensionless time tDL ¼ tk=ðm4ctL2Þ. The dimensionless pressure
drawdown at the well PwD and the dimensionless production-rate
qD are defined as:



Fig. 1. Top view of a vertical well intersected by an elliptical fracture. The drawing is for illustration purpose only and it does not reflect the actual scales. In practice, the fracture is
very thin and long, L[wf ; x1z0 .
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pwD ¼ 2pkhDp
mqd

(1)

qD ¼ mqd
2pkhDp

(2)

Respectively, where DP ¼ Pi;d � Pw;d is the dimensional well
pressure drawdown ; qD is the dimensional production-rate at the
well, and h is the height of the vertical fracture. Subscript “ST” is
used for short-time solutions. For a constant-rate production, the
pressure drawdown at the wellbore in short-times is given by Eq.
(30) in Jin (Jin et al., 2015a):

pwD;ST ¼
pffiffiffi
2

p 1
Gð5=4Þ

T1=4

FE
þ
�

1
2
ffiffiffiffi
p

p þ IðTÞ
�
T1=2

FE
�2

ffiffiffiffiffiffiffi
2p

p
p2�1

8
ffiffiffi
2

p
p

1
Gð7=4Þ

T3=4

FE
(3)

with

IðTÞ ¼ 1
31=6p Gð2=3Þ

2
41� 4

p

ð∞
0

sinx
x

exp

"
�
�

3
2p

�4

Tx4 � x

#
dx

3
5
(4)

T ¼ FE
2tDL (5)

G is the Gamma function. The fracture linear flow period which
precedes the bilinear flow regime has been neglected in the above
short-time analysis, as is commonly adopted (Cinco-Ley and

Samaniego, 1981). For the fracture linear flow, PwDf t1=2DL and

qDft�1=2
DL , which ensures that the production-rate is integrable.
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Thus, the short-time solution (3) starts from the bilinear flow

regime, with PwDft1=4DL , and it extends to the formation linear flow

regime which has PwDft1=2DL (the second term).
An approximate steady-state flow solution was also obtained by

Jin (Jin et al., 2015a, 2015b). The advantage of this approximate
solution is that it is expressed in terms of elementary functions
instead of special functions as in Prats (1961). In the elliptic co-
ordinates, the outer boundary is an ellipse x ¼ xe, confocal with the
limiting ellipse x ¼ x1 used to represent the fracture. The pressure
on this outer boundary is Pe;d (which is set to the initial reservoir
pressure Pi;d). Subscript “SS” is used to stand for this approximate
steady-state elliptical flow solution. The dimensional steady-state
production-rate is given by Eq. (21) in Jin (Jin et al., 2015b):

qd;SS ¼ 2pkh
m

Dp

xe � x1 þ 1
FE

h
p2

6 �P∞
n¼1

1
n2

1
1þnFE tanh 2 nðxe�x1Þ

i (6)

From Eq. (1) and Eq. (2), the dimensionless production-rate and
the dimensionless pressure drawdown at the well are then given
by:

qD;SS ¼ 1

xe � x1 þ 1
FE

h
p2

6 �P∞
n¼1

1
n2

1
1þnFE tanh 2 nðxe�x1Þ

i (7)

pwD;SS ¼ xe � x1 þ
1
FE

"
p2

6
�
X∞
n¼1

1
n2

1
1þ nFE tanh 2 nðxe � x1Þ

#

(8)

Obviously, for steady-state flows, PwD;SS ¼ 1=qD;SS. For steady-
state solution, the zero-pressure-drawdown boundary is located
on the outer boundary, x ¼ xe.



Fig. 2. Transient elliptical flow with an outward moving zero-pressure-drawdown
elliptical isobar bounded by two confocal ellipses.
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3. Model and results

3.1. Mathematical model

3.1.1. Mathematical model of boundary conditions
For tight gas reservoirs, diffusion of pressure disturbance is

extremely slow. The zero-pressure-drawdown boundary separates
the perturbed region, where there is motion of the gas, from the
unperturbed region where the gas is still at rest. Since the pressure
diffuses very slowly, this zero-pressure-drawdown boundary
moves very slowly outwards. Within the perturbed region, the flow
can be approximated as if the zero-pressure-drawdown boundary
is “frozen”. This type of approximation for modeling a moving
boundary problem has been used in fluid mechanics as well as in
crystal growth studies (Nishinaga, 2015). Furthermore, the location
of zero-pressure-drawdown boundary can be found, as shown
below.

Hantush & Thomas considered constant-rate groundwater
production from an infinitesimal well in an anisotropic and infinite
reservoir (Hantush and Thomas,1966). They obtained the following
formula for the pressure drawdown at any location sðx;y;tÞ ¼ Pi �
Pðx;y; tÞ:

sðx; y; tÞ ¼ Q
4pTe

W
�
S
4t

�
x2

Tx
þ y2

Ty

��
(9)

where Q ; S are the production-rate and the storage coefficient,
respectively; Tx; Ty are the two principal transmissivities with the
principal axes coinciding with the x- and y-axes, respectively; Te ¼ffiffiffiffiffiffiffiffiffiffi

TxTy
p

; and the well function WðuÞ is given by

WðuÞ¼
ð∞
u

e�u

u
du ¼ �Eið� uÞ (10)

where Ei is the exponential integral. The storage coefficient S is
related to the pressure diffusion coefficient D by the relation S ¼ 1=
D.

Eq. (9) shows that the constant pressure drawdown lines (or
isobars) are ellipses:

x2

Tx
þ y2

Ty
¼ const: (11)

In particular, the zero-pressure-drawdown boundary is given by
sðx; y; tÞ ¼ 0 which is an ellipse. Physically, this critical ellipse cor-
responds to the “radius of influence” for the case of an isotropic
reservoir was discussed by Charbeneau (2000). Charbeneau (2000)
approximated the well function WðuÞ by the two-term expansion
formula (the Jacob approximation):

WðuÞz � g� lnðuÞ ¼ ln
�
e�g

u

�
¼ ln

�
0:561
u

�
(12)

where g ¼ Euler constant ¼ 0:5772. Thus, the approximate loca-
tion of the zero-pressure-drawdown boundary is

u¼0:561 (13)

It is very important to note that the “radius of influence” given
by Eq. (13) is independent of the rate of production Q , or equiva-
lently the well pressure-drawdown. This is a unique property for
linear problems.

From Eq. (9) and Eq. (13), the zero pressure-drawdown ellipse is
given by
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u¼ S
4t

�
x2

Tx
þ y2

Ty

�
¼0:561 (14)

which can be re-arranged as Eq. (15):

x2

Tx2:244tS

þ y2

Ty2:244tS

¼ 1 (15)

In the problem of Hantush & Thomas (Hantush and Thomas,
1966), the well is infinitesimally small; and it is the anisotropy of
the reservoir that causes the isobars to be elliptical. Since flow in an
anisotropic reservoir is equivalent to flow induced by an elliptical
fracture (Kucuk and Brigham, 1979), we can also use Eq. (15) to
define the zero-pressure-drawdown isobar for fluid production
from an elliptical fracture. The “anisotropy” in this case is due to the
initial condition that the isobar must grow from an initially ellip-
tical shape of the fracture surface instead of a point.

Ellipses confocal with the fracture satisfy Eq. (16):

x2

L2cosh 2 x
þ y2

L2sinh 2 x
¼ 1 (16)

A comparison between Eq. (15) and Eq. (16) shows that we can
set the major andminor semi-axes of the zero-pressure-drawdown
ellipse as

a2e ¼ L2cosh 2xe ¼ Tx
2:244t

S
b2e ¼ L2sinh 2xe ¼ Ty

2:244t
S

(17)

The reservoir is isotropic in the case to be studied, Tx ¼ Ty ¼ 1.
As commented above, the zero-pressure-drawdown ellipse must
grow from the initial ellipse used to model the fracture, instead of
the origin as in the case of an infinitesimal well considered by
Hantush and Thomas (1966). Thus, the initial major and minor
semi-axes at t ¼ 0 are

a0 ¼ L cosh x1zL b0 ¼ L sinh x1zLx1 (18)

Incorporating the initial condition t ¼ 0 : ae ¼ a0; be ¼ b0 to
Eq. (17) with Tx ¼ Ty ¼ 1 leads to Eq. (19) for the zero-pressure-
drawdown boundary:

a2e ¼ L2cosh 2xe ¼ L2 þ 2:244t
S

a2e ¼ L2cosh 2xe ¼ L2x21 þ
2:244t

S
(19)

Replacing the storage coefficient by the pressure diffusivity D ¼
k=ð4mctÞ, we then obtain
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a2e ¼ L2cosh 2xe ¼ L2
�
1þ2:244

D
L2

t
�
a2e

¼ L2cosh 2xe ¼ L2
�
x21 þ2:244

D
L2

t
� (20)

Thus, in the elliptical coordinates, the zero-pressure-drawdown
boundary which is a confocal ellipse, is given by the solution of xe
from Eq. (20):

xeðtDLÞ¼ sinh�1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ 2:244tDL

q �

¼ ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ 2:244tDL

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21 þ 2:244tDL

q � (21)

where tDL ¼ Dt
L2 ¼ tk=ðm4ctL2Þ.

3.1.2. A new approximate solution for transient elliptical flow
The zero-pressure-drawdown isobar for a transient elliptical

flow at a finite fracture conductivity is an ellipse, but not a confocal
ellipse (Fig. 2). However, we use the confocal ellipse Eq. (21) as a
geometric approximation to the non-confocal zero-pressure-
drawdown ellipse whilst constructing the solution to a transient
elliptical flow at a finite fracture conductivity. While an estimate of
the error introduced by this geometric approximation is difficult to
obtain, the success of this approximation is ultimately judged by
the error of the solution for the pressure drawdown which can be
assessed by comparison with the known solution (Section 3.3).

With the “frozen” boundary approach mentioned above (Jin
et al., 2015a), an approximate well pressure drawdown PwD for
the transient elliptical flow can be obtained by replacing the outer
pressure boundary xe in the steady-state solution Eq. (8) by the
time-dependent zero-pressure-drawdown boundary given by Eq.
(21) for xeðtDLÞ:

pwD;TE ¼ xeðtDLÞ � x1 þ
1
FE

"
p2

6

�
X∞
n¼1

1
n2

1
1þ nFE tanh 2 nððtDLÞ � x1 Þ

#
xeðtDLÞ

¼ ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ 2:244tDL

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21 þ 2:244tDL

q �
: (22)

The approximate solution for transient elliptical flow Eq. (22)
has some interesting properties. Since x1 is very small, for large
times, tDL/∞, we have

xe/
1
2
ðln tDL þ2:194554Þ (23)

If the fracture conductivity is also large, FE[1, then for large
times, Eq. (22) and Eq. (23) give

pwD;TE z xez
1
2
ðln tDL þ2:194554Þ (24)

This is nearly identical to the result of Kucuk & Brigham (Kucuk
and Brigham, 1979) for FE/∞, tDL/∞ for pseudo-radial flow:

pwD;TEz
1
2
ðln tDL þ2:19537Þ (25)

Thus, the transient elliptical flow solution Eq. (22) can be used
for late-time pseudo-radial flow as well, which is characterized by
the lntDL=2 behavior. Also, this is expected given that the zero-
pressure-drawdown boundary grows into a circle in large times,
ae ¼ be, from Eq. (22) for large times.
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It is also worthwhile to examine the behavior of the approxi-
mate solution for transient elliptical flow Eq. (22) in short-times.
For short-times, tDL/0,

xe/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:244tDL

p
(26)

Thus, for large fracture conductivity, FE/∞, the well pressure
drawdown from Eq. (22) becomes

pwD;TE z xez
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:244tDL

p
(27)

This result differs slightly from the exact solution of Gringarten
& Ramey (Gringarten and Ramey, 1974) for FE/∞, tDL/0:

pwD ¼
ffiffiffiffiffiffiffiffiffiffi
ptDL

p
(28)

This quantitative difference, however, is not surprising, since
our finite fracture conductivity solution Eq. (22) is for elliptical
flows, and it is not intended for use for very short-times, as the
short-time solution should be provided by the asymptotic solution
given in Section 2. Nevertheless, the fact that our approximate
transient elliptical solution Eq. (22) can even capture the square-
root of time behavior in short-times is a positive feature of this
solution.
3.2. Model solution

The short-time asymptotic solution in Section 2 and the new
approximate transient elliptical flow solution in Section 3.1.2 can be
patched together to form a composite solution applicable to awider
range of times and flow regimes. It is noted that we only need to

keep the leading terms in the short-time solution Eq. (3) up to t1=2DL ,
as the transient elliptical flow solution Eq. (22) also contributes at

order t1=2DL . Thus, we can neglect the function IðTÞ in the square-
bracket in Eq. (3), as IðTÞ ¼ 0 and it is of a higher order compared
to the other term, 1=2

ffiffiffi
p

p ¼ 0:2821, in the same bracket.
The following observations made by Cinco-Ley & Samaniego

(Cinco-Ley and Samaniego, 1981) will also be incorporated into the
construction of the composite approximate solution:

(i) The bilinear flow represented by the term t1=4DL ends at tDL ¼
0:1=F2E when FE � 3;

(ii) The formation linear flow represented by the term t1=2DL starts

at tDL ¼ 100=C2
fD when FE � 20p ¼ 62:8, and ends at tDL ¼

0:016.

Observation (i) allows us to truncate the bilinear flow contri-
bution at tDL ¼ 0:1=F2E . Observation (ii) is reconciled with the short-

time solution Eq. (3), which shows that the term t1=2DL shows up even

before tDL ¼ 1=F2E , way ahead of tDL ¼ 100=F2E . Thus, we will keep

the t1=2DL term from tDL ¼ 0 till tDL ¼ 0:016 when FE � 20p ¼ 62:8.
With these considerations in mind, a composite transient so-

lution is constructed from Eq. (3) and Eq. (22), with the use of
smoothed step functions to patch the different solutions:

pwD ¼2:45083ffiffiffiffiffi
FE

p tDL
1
4f�

 
tDL �

0:1

FE
2

!

þ0:2821 tDL
1
2 f�ðtDL �0:016Þ � fþðFE �62:8Þ



Fig. 3. With FEvalues ranging from 0:1p to 1000, the trend curve of dimensionless pressure drawdown PwD with dimensionless time tDL.

Table 1
The basic parameters of Kes2 Well from the Keshen2 Block of Tarim Oilfield.

Parameters Symbols Units Value

Initial fluid pressure Pi;d MPa 117
Bottom hole pressure pw;d MPa 61
Gas viscosity m mPa,s 39.36
Fractured reservoir permeability k D 0.02143
Formation thickness h m 88.3
Production rate qd m3/d 300000
Dimensionless production index JD / 0.325551
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þ
(
xeðtDLÞ þ

1
FE

"
p2

6
�
X∞
n¼1

1
n2

1
1þ nFE tanh 2 nxeðtDLÞ

#)
fþ
�
tDL

� 0:1
.
FE

2
�

(29)

where

xeðtDLÞ¼ ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ 2:244tDL

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21 þ 2:244tDL

q �
(30)

and the smoothed step-functions (logistic functions) are given by

f�ðtDL � aÞ¼1� tanh½bðtDL � aÞ�
2

; fþðtDL � aÞ

¼1þ tanh½bðtDL � aÞ�
2

:

(31)

In Eq. (31), b is a large constant; one can use b ¼ 200, for
example. For FE/∞, and tDL/0 , the composite solution Eq. (29)

gives PwD ¼ 1:7801t1=2DL , which is very close to the exact solution

of Gringarten (Gringarten and Ramey, 1974), PwD ¼ ffiffiffiffi
p

p
t1=2DL ¼

1:7725t1=2DL .

3.3. Verification and discussion

Riley's thesis (1991) has been regarded as the most analytical,
accurate and extensive study on transient flows for an elliptical
fracture and it has been served as a benchmark for many subse-
quent works (Riley, 1991; Riley et al., 1991). The tabulated data
provided in Riley's thesis (Table D1, D2 in Riley's thesis) covers
seven decades of dimensionless time, tDL from 10�4 to 103, with
dimensionless fracture conductivity FE values ranging from 0.1p to
3064
1000. Our approximate analytical solution Eq. (29) for PwD is
compared to these tabulated data with semi-log plots in Fig. 3. In
the computations, b ¼ 200, x1 ¼ 0:0001 are used for formula Eq.
(29). It is reminded that our approximate analytical solution Eq.
(29) is valid for FE � 1, which is an assumption used in Jin (Jin et al.,
2015a) to derive the approximate steady-state solution. Results
computed from Eq. (29) are the solid lines labeled as “formula” and
those from Riley are marked by symbols.

For the pressure drawdown PwD, the analytical solution Eq. (29)
performed very well in the entire time range for FE � 1, as shown in
Fig. 3. Except a few points in the region transitioning from the
short-time asymptotic solution Eq. (3) to the transient elliptical
flow solution Eq. (22), the error remains under 1%. These compar-
isons over four decades of time provide validations as well as
conditions for the use of the composite approximate solution Eq.
(29) for transient flows in vertically fractured wells from bilinear
flow regime to pseudo-radial flow regime.

The simplicity of the analytical solution Eq. (29) allows the well
pressure drawdown formula to be implemented in a spreadsheet,
such as Excel, even on a hand-held advanced calculator, thus
providing a mobile reliable engineering tool for rapid evaluation of
the transient well pressure response.
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4. Case study

In this part, a field case of fractured vertical well from the
Keshen Block of Tarim Oilfield from China is selected to demon-
strate the model reliability and applicability.

4.1. Background

Kes2Well is a typical fractured vertical well from the Cretaceous
Bashijiqike Formation in the Keshen 2 block of Tarim Oilfield. The
sandstone matrix porosity of the block is mainly distributed in
2e6%, with an average of 4.2%, and the matrix permeability is
mainly distributed in ð0:01 � 0:5Þ� 10�3mm2, with an average of
0:075� 10�3mm2, generally belonging to ultra-low porosity, low-
permeability-ultra-low permeability reservoir. Fractures in the
formation of Kes2 Well are relatively developed, mainly with semi-
filled high-angle fractures. At the same time, the development of
tectonic fractures has the characteristics of segmented distribution,
mainly with high-angle semi-filling. The buried depth is between
6570 and 6780 m. Kes2 Well was put into production in 2013. After
fracturing, the daily gas production had stabilized at about
215,000 m3/day. The testing data comes from the daily gas pro-
duction and bottom hole pressure during a period of time after the
well has been stably put into production after fracturing. The basic
parameters of Kes2 Well have been provided in Table 1.

4.2. Model application

From Eq. (1) and DP ¼ Pi;d � Pw;d, the calculation formula of
bottom hole pressure can be obtained as:

pw;d ¼ pi;d � mqdpwD

2pkh
(32)

Under pseudo-steady-state flow, the formula of dimensionless
production index is:
Fig. 4. The relationship between the daily gas production and the d

3065
JD ¼ mQ

2pkh
�
p� pw;d

� (33)

Then the production formula can be expressed as:

Q ¼
2pkhJD

�
p� pw;d

�
m

(34)

where:

p¼ pi;d þ pw;d

2
(35)

We compiled the analytical solution Eq. (29), Eq. (32) and Eq.
(34) into the program. The relevant characteristic parameters of the
reservoir are the input parameters. Then we obtained the data and
plots of dimensionless time, tDL and dimensionless pressure
drawdown, pwD and bottom hole pressure, pw;d and daily gas
production, Q .

In view of the large time span of a single statistical result of the
existing field data (one count per day), it is not easy to obtain the
statistical relationship between the dimensionless time and the
dimensionless bottom hole pressure. Therefore, we use Eq. (29) to
obtain the relationship between dimensionless time and daily gas
production. After performing a series of type-curve matches, the
best match between calculated results and field data is obtained, as
shown in Fig. 4 and Fig. 5. Fig. 4 shows the relationship between the
daily gas production and the dimensionless time of Kes2 Well un-
der the analytical solution Eq. (29). It can be seen that after a period
of time, the daily gas production has stabilized at about
220,000 m3/day. Fig. 5 shows the comparison of field data and
calculation results of analytical model Eq. (29) with daily gas pro-
duction as the abscissa and bottom hole pressure as the ordinate.
These results are basically consistent with the overall under-
standing of Kes2 Well in the Keshen2 Block of Tarim Oilfield. It is
imensionless time of Kes2 Well under the analytical solution.



Fig. 5. The comparison of field data and calculation results of analytical solution.
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very convenient for evaluating fracture conductivity and produc-
tion after hydraulic fracturing in the field.

5. Conclusions

This work presents an approximate analytical solution Eq. (29)
for transient flow during constant-rate production from a
vertically-fractured well in an infinite homogeneous reservoir with
finite fracture conductivity. The solution covers transient flows
from the bilinear flow regime to the pseudo-radial flow regime. The
solution for the pressure drawdown shows excellent agreement
with the results of Riley (1991) over seven decades of time when
FE � 1. The explicit real-time well pressure drawdown analytical
model can be easily implemented in a spread sheet such as Excel,
even on a hand-held calculator, thus serving as a practical and
reliable engineering tool for rapid evaluation of the transient well
pressure response.
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