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a b s t r a c t

The analysis technology of Amplitude Variation with Offset (AVO) is one of the important methods for oil
and gas reservoir prediction. Zoeppritz equation and its approximations are the theoretical basis of AVO
analysis, which assumes that the upper and lower media of a horizontal interface are single-phase media.
Limited by this assumption, AVO analysis has limited prediction and identification accuracy for complex
porous reservoirs. In view of this, the first-order approximate analytical expressions of oblique elastic
wave at an interface of porous media are derived. Firstly, the incident and scattering characteristics of
various waves at the interface of porous media are analyzed, and the displacement vectors generated by
these elastic waves are described by exponential function. Secondly, the kinematic and dynamic
boundary conditions at the interface of porous media are discussed. Thirdly, by substituting the
displacement vectors of incident and scattered waves into boundary conditions, the exact analytical
equation is derived. Then, considering the symmetry of scattering matrix in the equation, the exact
analytical expressions of each scattered wave are obtained. Furthermore, under the assumptions of small
incident angle, weak elasticity at an interface of porous media, and ignoring the second- and higher-
order terms, the first-order approximate analytical expressions are derived. Establishing a model of
sandstone porous media with different porosity in upper and lower media, the correctness of the
approximate analytical expressions is verified, and the elastic wave response characteristics of lithology
and pore fluids are analyzed.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Rock in seismic exploration can usually be considered as a two-
phase body composed of rock skeleton and pore fluids. The rock
properties are not only related to various mineral components that
make up rock skeleton, but also affected by many factors, such as
pore's size, shape, connectivity, and its filling.When an elastic wave
propagates in such a media, it will produce complex reflection and
transmission characteristics at the interface, which carry a lot of
information related to rock skeleton, pores, and their fillings.
Making full use of these information, the structural characteristics,

rock properties, pores and pore fluid types of underground media
can be identified to a certain extent, which makes it possible to
predict oil and gas reservoir by using reflected elastic waves.

The variation of seismic wave amplitude with offset (AVO) in-
cludes elastic and physical properties of upper and lower media at
formation interface. Zoeppritz equation lays the theoretical foun-
dation for AVO analysis (Zoeppritz, 1919), which establishes the
quantitative relationship between seismic data and incident angle,
P-wave velocity, SV-wave velocity and density. However, the
reflection and transmission information of the P- and SV-waves in
the equation are coupled, which limits its application in the field of
seismic exploration, although some research results have been
obtained based on the equation in elastic parameter inversion (Lu
et al., 2015; Gholami et al., 2018; Liu et al., 2021), oil and gas
reservoir prediction (Huang et al., 2015; Pan et al., 2017; Passos
et al., 2019; Sang et al., 2021), etc. As seismic exploration is
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mainly based on reflected wave (P- or SV-waves) information, it is
necessary to decouple the reflected elastic waves from the equation
and to derive exact or approximate expressions (Muskat andMeres,
1940; Bortfeld, 1962; Aki and Richards, 1980; Mallick, 1993; Wang,
1999; Santos and Tygel, 2004). The famous Aki and Richards
approximation (Aki and Richards, 1980) lays the theoretical foun-
dation for the prestack AVO inversion, which establishes an
approximate linear relationship between the angle dependent
reflection coefficient of the P- or SV-wave and the P-wave velocity,
SV-wave velocity and density. Based on this approximation and
combined with petrophysical theory, geophysicists have derived a
series of deformation approximations (Shuey,1985; Smith and
Gidlow,1987; Fatti et al., 1994; Gray et al., 1999), which are widely
used in hydrocarbon reservoir prediction (Russell et al., 2003; Yin
and Zhang, 2014; Zong et al., 2015, 2021; Chen et al., 2020).

Zoeppritz equation and its transformations assume that the
upper and lower rocks at an interface are single-phase isotropic
homogeneous media, which have limited applicable conditions for
complex porous media saturated with pore fluids. With the
development of elastic porous theory (Biot, 1941, 1957, 1962;
Gassmann,1951; Smit,1961; Mojeddifar et al., 2015) and its appli-
cation in oil and gas reservoir prediction (Chen et al., 2012;
Chabyshova and Goloshubin, 2014; Yin et al., 2013, 2015; Sang et al.,
2021), the scattering characteristics of elastic waves at the interface
of porous media have attracted great attention of exploration
geophysicists. The boundary conditions at an interface of porous
media aremuchmore complex than that of the single-phasemedia.
In addition to considering the displacement and stress continuity of
elastic solids at an interface, the effects of pore's size, structure and
filling can also not be ignored (Deresiewicz and Skalak,1963;
Deresiewicz,1974; Lovera,1987; Sharma and Gogna,1990;
Sharma,2008). Following these studies, the reflection and trans-
mission of elastic waves at an interface of porous media saturated
with non-viscous fluids were considered, and the seismic wave
response characteristics of pores and pore fluids were analyzed
(Vashisth et al., 1991; Denneman et al., 2002; Kumar et al., 2011; Liu
and Greenhalgh, 2014; Zhou et al., 2019).

The viscosity of pore fluids in complex porous media can not be
ignored. This property causes dispersion and attenuation of elastic
waves propagating in porous media, resulting in the change of
reflection and transmission characteristics (Yang and Sato,1998;
Kumar et al., 2013; Kumari,2014; Kumari et al., 2017, 2021). For
more complex porous media, such as carbonate reservoir, reef and
beach reservoir, etc., the pore contains two or more fluids. The type
of pore fluids, volume ratio among pore fluids, and interaction
between pore fluids and rock skeleton will affect the scattering
characteristics of elastic waves at the interface (Drew et al., 1979;
Tomar and Arora, 2006; Arora and Tomar,2007; Lo et al., 2009; Yeh
et al., 2010; Dai et al., 2006). Their researches analyze the variation
of elastic wave amplitude with offset for different types of porous
media, that is, Zoeppritz equation of different two-phase media.
While the reflection and transmission information of the fast P-,
SV-, and slow P-waves are coupled, which makes it difficult to
independently analyze the relative influence of lithologic and pore
fluid parameters on the scattering coefficients of elastic waves. The
exact and approximate analytical methods are relatively simple and
practical expressions, which are also more convenient for the
analysis of elastic wave response characteristics of various lithology
and pore fluid parameters (Gurevich et al., 2004; Kumar et al., 2018,
2019; Yuan et al., 2020). At present, the approximate expressions of
scattering coefficients of an elastic wave perpendicular at an
interface of porous media had been derived (Gurevich et al., 2004;
Silin et al., 2004; Silin and Goloshubin, 2010; Zhou et al., 2020;
Carcione et al., 2021).

The approximate expressions of scattering coefficient of an

elastic wave incident at an interface of porous media at any angle
have not been studied. Compared with vertically reflected elastic
wave, prestack seismic data contains more abundant amplitude
information. Based on previous researches, considering boundary
conditions at the interface of porous media saturated with a non-
viscous fluid, an exact equation of scattering coefficient is firstly
derived. Further simplifying the equation, and fully considering the
symmetry of its scattering matrix, the exact analytical expressions
of various scattering coefficients can be obtained. Under various
priori assumptions, the first-order approximate analytical expres-
sions of scattering coefficients are finally derived.

2. Analytical equation

2.1. Displacement and stress-strain

The displacement vectors of porous media caused by the

propagation of the fast P-, SV-, and slow P-waves, UP ; USV ; UB, and
the total displacement vector of porous media, Utotal, can be
expressed as,

UP ¼
h
UP
x UP

y UP
z

i
¼
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0
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�
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Utotal ¼ UP þ USV þ UB ¼ �Ux Uy Uz
�

(4)

Here, the symbols of f; j; 4 represent the wave functions of the
fast P-, SV-, and slow P-waves, and the operators of v

vx;
v
vz denote the

partial derivatives of x; z, respectively. The superscripts of P; SV ; B
represent the fast P-, SV-, and slow P-waves, and the subscripts of x;
y; z denote along the directions of x; y; z, respectively. For example,
the symbol of UP

x represents the displacement component of
porous media along the direction of x caused by the fast P-wave.

Following Silin and Goloshubin (2010), the stresses between
rock skeletons caused by the fluctuations of the fast P- and SV-
waves, tP and tSV , and the total stress between rock skeletons,
tskeleton, can be expressed as,

tP ¼
h
tPx tPy tPz
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(6)

tskeleton ¼ tP þ tSV ¼ KðV,UtotalÞIþ m

�
VUtotal þ ðVUtotalÞT � 2

3
ðV,UtotalÞI

�
(7)

Here, the symbols of K; m represent the bulk and shear moduli of
rock skeleton, respectively, and the superscript T denotes trans-

position. The operators of v2

vx2,
v2

vz2, V, V,, and V2 represent quadratic
partial derivative for x, quadratic partial derivative for z, Gradient
operator, Divergence operator, and Laplace operator, respectively.
For example, tPx denotes the shear stress along the direction of x
between rock skeletons caused by the fast P-wave.

The displacement vector of pore fluid relative to rock skeleton,
W, the static pressure of pore fluids, P, and the total stress between
two pore media, ttotal, can be expressed as,
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W¼ dPUP þ dSVUSV þ dBUB (8)

P ¼ ½ � aMV,Utotal �MV,W�,I (9)

ttotal ¼ tskeleton � a,P (10)

where, the symbols of a andM represent Biot's parameters, and I is

identitymatrix. The symbols of dP ; dSV ; dB denote the ratios between
the displacement amplitude of pore fluid relative to rock skeleton
and that of rock skeleton caused by the fast P-, SV-, and slow P-
waves, respectively.

2.2. Scattering matrix

Different from single-phase media, describing porous media
requires more lithology and fluid parameters, mainly including:
rock physical parameters (porosity 40, rock matrix density rs), rock
skeleton parameters (bulk modulus Kd and shear modulus md of
rock skeleton), Biot's parameters (a andM), and pore fluid param-
eters (bulk modulus Kd, viscosity coefficient hf , and fluid density
rf ). When a plane wave is reflected or transmitted at an interface
between two porous media, it also includes velocity parameters
(fast P-wave a, SV-wave b, and slow P-wave g), and incident, re-
flected, and transmitted angles (fast P-wave i, SV-wave j, and slow
P-wave k), as shown in Fig. 1.

In Fig. 1, the upper and lower media of a horizontal interface are
isotropic porous media saturated with pore fluids, and two media
are assumed in seamless contact. In the upper porous medium,
there are three kinds of elastic waves incident at the horizontal

interface (fast P-wave P
a

1, SV-wave S
a

1, and slow P-wave B
a

1), and

there are also three kinds of elastic waves reflected from the

interface to the upper porousmedium (fast P-wave P
b

1, SV-wave S
b

1,

and slow P-wave B
b

1). Similarly, there are three kinds of incident

waves (fast P-wave P
b

2, SV-wave S
b

2, and slow P-wave B
b

2), and

three kinds of reflected waves (fast P-wave P
a

2, SV-wave S
a

2, and

slow P-wave B
a

2) in the lower porous medium. The displacement
vectors of the six incident waves can be described by the expres-
sions in Table 1. We use the superscripts of b and a to represent
the up and down traveling waves, respectively, and the subscripts
of 1 and 2 to represent the upper and lower media, respectively.

Each incident wavewill produce three reflectedwaves and three
transmitted waves at the horizontal interface, as shown in Fig. 2.
Fig. 2(a), (c), and 2(e) show the reflection and transmission with
incident waves of the upper medium being the fast P-, SV-, and
slow P-waves, respectively, and the corresponding displacement
vectors of the reflected and transmitted waves are shown in
Tables 2(a), 2(c), and 2(e), respectively. Fig. 2(b), (d), and 2(f)
represent the reflection and transmission with incident waves of
the lower medium being the fast P-, SV-, and slow P-waves,
respectively, and the corresponding displacement vectors of the
reflected and transmitted waves are shown in Tables 2(b), 2(d), and

2(f), respectively. For example, the symbol of P
a
S
b

represents the
reflection coefficient with incident fast P-wave and reflected SV-
wave.

Similar to Aki and Richards (1980), 36 kinds of reflection and
transmission coefficients at the interface between two porous
media can form a ScatteringMatrix as shown in Eq. (11), which can
be calculated by the continuity of stress and displacement of rock
skeleton (and pore fluids) along the x and z directions.

Fig. 1. Complete system of incident and scattering for P-SV-B plane waves.
The short arrows indicate the direction of wave’s vibration, and the long arrows denote the propagation direction.
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2.3. Approximate analytical equation

The boundary conditions at an interface of porous media satu-
rated with pore fluids are determined by their existing physical

conditions. Generally, the energy conservation and fluidity fluid
continuity equation at the interface are used as a basic ideas for
analyzing boundary conditions (Sharma, 2008). Following Silin and
Goloshubin (2010) and Zhou et al. (2019), the boundary conditions
at an interface of porous media include kinematics [tangential
displacement of rock skeleton Ux, vertical displacement of rock
skeleton Uz, and displacement of pore fluids Wz] and dynamics
[total tangential stress ðttotalÞx, total vertical stress ðttotalÞz, and pore
fluid static pressure Pz].

Displacement vectors (Eqs. (1)~(4) and (8)) and stress vectors
(Eqs. (5)~(7) and (9)) are substituted into the boundary conditions
(Eq. (12)), and assuming that the velocities and corresponding
incident angles of three elastic waves meet Snell's law (Eq. (13)),
the expressions of incident, reflected and transmitted amplitudes
described by incident and reflection angles, elastic and physical
parameters, Biot's parameters, displacement potential amplitude
ratio, and other parameters can be derived (Eq. (14)).

Table 1
Displacement vectors of P-SV-B incident waves.

Medium Type Displacement

Upper medium Downgoing P
Sð sin i1 0 cos i1 Þexp

h
iu
�
px þ cos i1

a1
z � t

	i
Downgoing SV

Sð cos j1 0 �sin j1 Þexp
h
iu
�
px þ cos j1

b1
z � t

	i
Downgoing B

Sð sin k1 0 cos k1 Þexp
h
iu
�
px þ cos k1

g1
z � t

	i
Lower medium Upgoing P

Sð sin i2 0 �cos i2 Þexp
h
iu
�
px � cos i2

a2
z � t

	i
Upgoing SV

Sð cos j2 0 sin j2 Þexp
h
iu
�
px � cos j2

b2
z � t

	i
Upgoing B

Sð sin k2 0 �cos k2 Þexp
h
iu
�
px � cos k2

g2
z � t

	i

Fig. 2. 36 kinds of reflection and transmission coefficients generated by P-SV-B plane wave system. The short arrows indicate the direction of wave's vibration, and the long arrows
denote the propagation direction.
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By writing Eq. (14) into the forms of matrix and vector, the exact
analytical equation of oblique incident wave can be obtained as Eq.
(15). Following the ideas of Aki and Richards (1980) and Chaisri and
Krebes (2000), the scattering matrix in Eq. (11) can be obtained by
solving Eq. (16) and making elementary changes.

The parameters and combinations in the coefficient matrix of
Eq. (15) can be further approximated and simplified (See Appendix
A). Eqs. A-1~A-6 is substituted into Eq. (15), then the approximate
analytical equation can be simplified as Eq. (17). By analyzing Eqs.
(17a) and (17b), we can see that the scattering coefficient to be
solved in Eq. (16) can be expressed by 9 submatrices of C1D � C9D,

which need to be obtained by solving matrix L�1N. For solving it,
we need to fully consider the similarity of parameters in matrices L
and N, that is, they can be described by 9 two-dimensional sub-
matrices A � K, which provides convenience for the solution of Eq.
(17c).
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3. Exact analytical expressions

Taking full account of the parameter symmetry of the coefficient
matrix in Eqs. (17a) and (17b), the scattering coefficient in 17(c) can
be solved, as shown in Eq. (18) (Eq. B-9). See Appendix B for the
detailed solution process.

In Eq. (18), the submatrices C4D and C7D can be described inde-
pendently by sub blockmatrices A � E and their combinations; The
submatrices C8D and C9D can be expressed as a linear combination of
submatrix C7D, and the submatrices C5D and C6D are linear combi-
nations of submatrix C4D; Finally, the submatrices C1D, C2D, and C3D
can be written as linear combinations of submatrices C4D andC7D, C5D
andC8D, C6D andC9D, respectively. This linear combination form shows
that we can use sub block matrices A � E and their combination to
independently describe the scattering coefficient submatrices
C1D � C9D, which means that the Exact Analytical Expressions of 36
scattering coefficients in equation (16) can be obtained by inde-
pendently solving submatrices C1D � C9D.
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Table 2(a)
Displacement vectors of scattered wave generated by incident fast P-wave from upper medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞP

a
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV

Sð cos j1 0 sin j1 ÞP
a
S
b
exp

h
iu
�
px � cos j1

b1
z � t

	i
Upgoing B

Sð sin k1 0 �cos k1 ÞP
a
B
b
exp

h
iu
�
px � cos k1

g1
z � t

	i
Lower medium Downgoing P

Sð sin i2 0 cos i2 ÞP
a
P
a
exp

h
iu
�
px þ cos i2

a2
z � t

	i
Downgoing SV

Sð cos j2 0 �sin j2 ÞP
a
S
a
exp

h
iu
�
px þ cos j2

b2
z � t

	i
Downgoing B

Sð sin k2 0 cos k2 ÞP
a
B
a
exp

h
iu
�
px þ cos k2

g2
z � t

	i

Table 2(b)
Displacement vectors of scattered wave generated by incident fast P-wave from lower medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞP

b
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV

Sð cos j1 0 sin j1 ÞP
b
S
b
exp

h
iu
�
px� cos j1

b1
z� t

��
Upgoing B

Sð sin k1 0 �cos k1 ÞP
b
B
b
exp

h
iu
�
px� cos k1

g1
z� t

��
Lower medium Downgoing P

Sð sin i2 0 cos i2 ÞP
b
P
a
exp

h
iu
�
px þ cos i2

a2
z � t

	i
Downgoing SV

Sð cos j2 0 �sin j2 ÞP
b
S
a
exp

h
iu
�
px þ cos j2

b2
z � t

	i
Downgoing B

Sð sin k2 0 cos k2 ÞP
b
B
a
exp

h
iu
�
px þ cos k2

g2
z � t

	i

Table 2(c)
Displacement vectors of scattered wave generated by incident SV-wave from upper medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞS

a
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV

Sð cos j1 0 sin j1 ÞS
a
S
b
exp

h
iu
�
px� cos j1

b1
z� t

��
Upgoing B

Sð sin k1 0 �cos k1 ÞS
a
B
b
exp

h
iu
�
px� cos k1

g1
z� t

��
Lower medium Downgoing P

Sð sin i2 0 cos i2 ÞS
a
P
a
exp

h
iu
�
px þ cos i2

a2
z � t

	i
Downgoing SV

Sð cos j2 0 �sin j2 ÞS
a
S
a
exp

h
iu
�
px þ cos j2

b2
z � t

	i
Downgoing B

Sð sin k2 0 cos k2 ÞS
a
B
a
exp

h
iu
�
px þ cos k2

g2
z � t

	i

Table 2(d)
Displacement vectors of scattered wave generated by incident SV-wave from lower medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞS

b
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV

Sð cos j1 0 sin j1 ÞS
b
S
b
exp

h
iu
�
px � cos j1

b1
z � t

	i
Upgoing B

Sð sin k1 0 �cos k1 ÞS
b
B
b
exp

h
iu
�
px � cos k1

g1
z � t

	i
Lower medium Downgoing P

Sð sin i2 0 cos i2 ÞS
b
P
a
exp

h
iu
�
px þ cos i2

a2
z � t

	i
Downgoing SV

Sð cos j2 0 �sin j2 ÞS
b
S
a
exp

h
iu
�
px þ cos j2

b2
z � t

	i
Downgoing B

Sð sin k2 0 cos k2 ÞS
b
B
a
exp

h
iu
�
px þ cos k2

g2
z � t

	i
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Solving two-dimensional (2D) submatrices A � E and their
composite forms step by step (Appendix C), and substituting the
results into Eq. (18), the analytical solutions of 36 scattering co-
efficients are finally derived as,
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In Eqs. (19)e(27), the expression forms of some parameters are
similar to Aki and Richards (1980) (Table C-1), and others are
related to pores and pore fluids (Table C-2). The expression forms of
Eqs. (19)e(27) realizes the ability to independently describe any
scattering coefficient by using properties of rock, pore, and its fluids
of upper and lower media. They decouple 36 scattering coefficients
from scattering matrix (Eq. (18)), which avoids mutual interference
between various scattering coefficients.

4. Approximate analytical expressions

There is a nonlinear relationship between the resolved scat-
tering coefficients and the parameters of rock, pore, and its fluids in
Eqs. (19)e(27), which is difficult to be applied in practical pro-
duction. Under the assumptions of weak elasticity and small angle
incidence at the interface of porous media, we first make an
approximate transformation of the relevant parameters in Eqs.
(19)e(27). See Appendix D for the detailed process.

With the first- and second-order approximations of the relevant
parameters in Table C-1 and C-2 being substituted into the exact
analytical expressions (Eqs. (19)e(27)), and ignoring the second-
and above-order items of final results, the first-order approximate
expressions of 36 scattering coefficients, which can be described by
the fast P-wave velocity, SV-wave velocity, slow P-wave velocity,
equivalent density, Biot's parameters, and displacement amplitude
ratio corresponding to the slow P-wave are derived as,

�
P
a
B
b

P
b
B
b

P
a
B
a

P
b
B
a

�
z

g

2ra
,

a

aþ dB
ð�aþ rZÞ

�
1 1
�1 �1

�
; (28)

�
S
a
B
b

S
b
B
b

S
a
B
a

S
b
B
a

�
z

bg

2ra2
,

a

aþ dB
dp

cos j
b

�
1 1
�1 �1

�
; (29)

"
B
a
B
b

B
b
B
b

B
a
B
a

B
b
B
a

#
z

"
0 1

1 0

#
þ DdB

dB

"
0 1

�1 0

#
þ

1
2

�
DM

M
� Dg

g
þ a

aþ dB

�
Da
a

� DdB

dB
þ
�g
a

	2��a
r
þ Z

	�" 1 1

�1 �1

# (30)

�
P
a
S
b

P
b
S
b

P
a
S
a

P
b
S
a

�
z � ap

2br cos j
b

�
a
�

1 1
�1 �1

�
þ d

cos i
a

cos j
b

�
1 �1
1 �1

�
(31)

�
S
a
S
b

S
b
S
b

S
a
S
a

S
b
S
a

�
z

�
0 1
1 0

�
þ1
2

�
d
r
p2 � tan2 j

Db
b

��
1 1
�1 �1

�
� 1
2

�
a
r
þDb

b

��
1 �1
1 �1

�

(32)

�
B
a
S
b

B
b
S
b

B
a
S
a

B
b
S
a

�
z � ap

2r cos i cos j

�
a,g

cos i
a

�
1 1
�1 �1

�
þ d

cos i
a

cos j
b

�
1 �1
1 �1

�

(33)

�
P
a
P
b

P
b
P
b

P
a
P
a

P
b
P
a

�
z

�
0 1
1 0

�
þ1
2

�
tan2 i

Da
a

� d
r
p2
�

�
�
1 �1
1 �1

�
þ1
2

�
Dr
r

þDa
a

� d
r
p2 �g2

a2
,

a

aþ dB

�
�a
r
þ Z
	�� 1 1

�1 �1

�
(34)

�
S
a
P
b

S
b
P
b

S
a
P
a

S
b
P
a

�
z � bp

2r cos i

�
a
�
1 �1
1 �1

�
þ
�
1þg2

a2
,

a

aþ dB

�
d
cos i
a

cos j
b

�
1 1
�1 �1

�

(35)

Table 2(f)
Displacement vectors of scattered wave generated by incident slow P-wave from lower medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞB

b
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV

Sð cos j1 0 sin j1 ÞB
b
S
b
exp

h
iu
�
px � cos j1

b1
z � t

	i
Upgoing B

Sð sin k1 0 �cos k1 ÞB
b
B
b
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h
iu
�
px � cos k1
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z � t

	i
Lower medium Downgoing P
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P
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h
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	i
Downgoing SV
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Table 2(e)
Displacement vectors of scattered wave generated by incident slow P-wave from upper medium.

Medium Type Displacement

Upper medium Upgoing P
Sð sin i1 0 �cos i1 ÞB

a
P
b
exp

h
iu
�
px � cos i1

a1
z � t

	i
Upgoing SV
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	i
Upgoing B
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	i
Lower medium Downgoing P
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a
P
a
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h
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�
px þ cos i2
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z � t

	i
Downgoing SV

Sð cos j2 0 �sin j2 ÞB
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S
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�
px þ cos j2

b2
z � t

	i
Downgoing B

Sð sin k2 0 cos k2 ÞB
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here, Z ¼ Da
a
þ DM

M
� 2 Da

a .

As the incident and scattering system of the constructed P-SV-B
plane waves (Fig. 1) is symmetrical, the approximate expressions of
the scattering coefficients in Eqs. (28)e(36) are also symmetrical,
respectively. Taking Eq. (32) as an example, the constant terms of

approximate expressions S
a
S
b

(SV-wave reflection coefficient with

SV-wave being incident from upper porous medium) and S
b
S
a

(that
from lower porous medium) are equal, and the coefficients of their
first-order term differ by a negative sign, which is caused by the
difference of wave propagation direction.

The first-order approximate expression of the ratio between the
displacement amplitude of pore fluid relative to rock skeleton and

that of rock skeleton corresponding to the slow P-wave dB (Eq. A-
3c) can be expressed as,

dB z � ra2
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; (37a)
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r
: (37b)

here, the first-order term's coefficient of dB is zero.
Replace Eq. (37) into Eqs. (28)e(36), and considering the sym-

metry in Eqs. (28)e(36), the approximate expressions of scattering
coefficients can be expressed as,
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The approximate expressions of scattering coefficients in Eqs.
(38)e(46) can be uniformly written as,

R0ðqÞz a0ðqÞDa
a

þ b0ðqÞDb
b

þ c0ðqÞDr
r

þ d0ðqÞDg
g

þ e0ðqÞDa
a

þ f 0ðqÞDM
M

: (47)

The linear approximation of the scattering coefficient in Eq. (47)
includes reflection terms of the fast P-wave velocity Da

a , SV-wave

velocity Db
b
, equivalent density Dr

r , slow P-wave velocity Dg
g , and

Biot's parameters Da
a
and DM

M
. Its first three terms are similar to Aki

and Richards (1980), and last three terms are related to pore and
pore fluids, which is an extension of Aki and Richards (1980). As the
slow P-wave velocity g, Biot's parameters a and M directly reflect
the properties of pore and pore fluids (Biot, 1962), realizing high-
precision inversion of these parameters can improve the identifi-
cation accuracy of pore fluids in complex oil and gas reservoirs.

5. Model test and analysis

5.1. Porous media models

For verifying the correctness of the exact analytical expressions
19e27 and the approximate analytical expressions 38e46, and
analyzing the effects of pore and pore fluids on response charac-
teristics of elastic wave, a porous media model is established in this
paper. In the model, the upper layer is sandstone porous medium
with porosity of 0.26 and saturated with oil, and the lower layer is
sandstone porous medium with porosity of 0.2 and saturated with
brine. Here, the bulk modulus Ks, shear modulus ms, and density rs
of sandstone matrix are 38GPa, 44GPa, and 2650kg=m3 (Ren et al.,
2009), respectively. Sandstone skeleton parameters are shown in
Table 3 and pore fluid parameters are shown in Table 4.

Here, K; m; f are bulk modulus and shear modulus of rock

skeleton, and porosity, respectively. k; c; �a
�

represent rock
permeability, tortuosity factor, and pore scale factor, respectively.
Kf ; rf ; h denote bulk modulus, density, and viscosity coefficient of
pore fluids, respectively.

Table 3
Sandstone skeleton parameters (Ren et al., 2009).

Model KðGPaÞ mðGPaÞ f kðdarcyÞ ~cm a
�ðmÞ

Upper layer 7.49 5.67 0.26 1.6 1.72 10�6

Lower layer 16.9 13.96 0.20 0.2 1.62 10�6

Table 4
Pore fluid parameters (Zhao et al., 2015).

Model Gas Oil Brine

Kf ðGPaÞ 0.012 2.1 3.0

rf
�
kg=m3� 78.0 940 1050

hðcPÞ 0.15 5.0 1.6
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Fig. 3. Scattering coefficients of the fast P-wave with the fast P-wave being incident.
Figures (a) and (b) are reflection coefficients, and (c) and (d) represent transmission coefficients of the fast P-wave. The red solid line, black and blue dotted lines denote scattering
coefficients of exact equation (Eq. (16)), exact analytical expressions (Eq. (25)), and first-order linear approximations (Eq. (44)), respectively.

Fig. 4. Scattering coefficients of the SV-wave with the fast P-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (22)) and
first-order linear approximation (Eq. (41)), respectively.
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Fig. 5. Scattering coefficients of the slow P-wave with the fast P-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (19)) and
first-order linear approximation (Eq. (38)), respectively.

Fig. 6. Scattering coefficients of the fast P-wave with the SV-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (26)) and
first-order linear approximation (Eq. (45)), respectively.
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Fig. 8. Scattering coefficients of the slow P-wave with the SV-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (20)) and
first-order linear approximation (Eq. (39)), respectively.

Fig. 7. Scattering coefficients of the SV-wave with the SV-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (23)) and
first-order linear approximation (Eq. (42)), respectively.
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5.2. Scattering coefficients corresponding to the incident fast P-
wave

Substituting the parameters of lithology and pore fluids in
Tables 3 and 4 into the analytical equation (Eq. (16)), exact analytical
expressions (Eqs. (19)e(27)), and first-order linear approximations
(Eqs. (28)e(36)), we verify the correctness of the derived analytical
equations and expressions, and analyze the response characteristics
of various scattered waves. Fig. 3 shows scattering coefficients with
the fast P-wave being incident. Wherein, subgraphs (a) and (b)
represent the reflection coefficients of the fast P-wave, and (c) and
(d) denote the transmission coefficients of the fast P-wave. The red
solid line, the black and blue dotted lines represent the scattering
coefficients calculated by the exact equations (Eq. (16)), the exact
analytical expressions (Eq. (25)), and the first-order linear approxi-
mation (Eq. (44)), respectively. Figs. 4 and 5 show the scattering
coefficients of the SV- and slow P-waves with the fast P-wave being
incident, respectively, and the meaning of their subgraphs is similar
to that in Fig. 3. The black and blue dotted lines in Fig. 4 are calculated
by Eqs. (22) and (41), respectively, and that in Fig. 5 are calculated by
Eqs. (19) and (38), respectively.

According to the analysis of Figs. 3-5,

1) The scattering coefficients (black dotted line) calculated by exact
analytical expressions (Eqs. (25), (22), and (19)) are consistent
with that (red solid lines) calculated by exact equation (Eq. (16))
in Fig. 3a and c, which shows that our deduced exact analytical
expressions are correct, and the same conclusion can be ob-
tained by analyzing subgraphs (a) and (c) in Figs. 4 and 5.

2) The scattering coefficients (blue dotted line) calculated by first-
order approximate analytical expressions (Eqs. (44), (41), and

(38)) have a similar variation curve with that (red solid line)
calculated by exact equation (Eq. (16)), which shows the cor-
rectness of our derived approximate analytical expressions to a
certain extent.

3) Depending on the influence degree of truncation error (ignoring
second- and higher order terms), the critical angles of scattering
coefficient of the SV-wave first-order approximation (Eq. (41),
and Fig. 4b and d) are smaller than that of fast P-wave (Eq. (44),
and Fig. 3b and d). The scattering coefficients of the slow P-wave
are small, and their first-order approximations are greatly
affected by the truncation error (Fig. 5b and d).

5.3. Scattering coefficients corresponding to the incident SV-wave

Figs. 6e8 show scattering coefficients of the fast P-, SV-, and
slow P-waves, respectively, and the meanings of their subgraph are
similar to that in Fig. 3. In Figs. 6e8, black dotted lines represent
scattering coefficients calculated by exact analytical expressions
(Eqs. (26), (23), and (20), respectively), and blue dotted lines are
that calculated by first-order approximations (Eqs. (45), (42), and
(39), respectively).

According to Figs. 6e8.

1) When the incident angle is less than 40�, scattering coefficients
(blue dotted lines) calculated by first-order linear approxima-
tions (Eqs. (45), (42), and (39)) in Figs. 6be8b and 6d-8d are
basically consistent with that (red solid lines) calculated by
exact equation (Eq. (16)), which shows that the deduced first-
order linear approximations with the SV-wave being incident
are correct.

Fig. 9. Scattering coefficients of the fast P-wave with the slow P-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (27)) and
first-order linear approximation (Eq. (46)), respectively.
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2) However, as different contribution of each-order term to
different approximate expressions, the accuracy of different
first-order approximations is also different. The fast P-wave's
accuracy is higher (Fig. 6b and d), and the SV-wave's accuracy is
relatively lower (Fig. 7b and d).

3) As scattering coefficients of the slow P-wave are very small, and
are greatly affected by the weak elastic assumption and the
neglect of second- and higher-order terms, the accuracy of
approximate expressions of the slow P-wave with the SV-wave
being incident is relatively low (Fig. 8b and d).

5.4. Scattering coefficients corresponding to the incident slow P-
wave

Except for the case of the fast P- and SV-waves being incident,
the characteristics of scattering coefficient of the slow P-wave being
incident are further analyzed in this paper. Figs. 9e11 respectively
show the scattering coefficients of the fast P-, SV- and slow P-waves
with the slow P-wave being incident, and the meanings of their
subgraphs are similar to that in Fig. 3. In Figs. 9e11, the black dotted
lines represent scattering coefficients calculated by accurate
analytical expressions (Eqs. (27), (24) and (21), respectively), and
the blue dotted lines are that calculated by first-order linear
approximate expressions (Eqs. (46), (43), and (40), respectively).

From Figs. 9e11,

1) In the case of the slow P-wave incidence, the scattering co-
efficients calculated by first-order approximations of the fast P-,
SV-, and slow P-waves (Eqs. (46), (43), and (40)) are basically the

same as that calculated by analytical equation (Eq. (16)). How-
ever, the accuracy of approximate expressions (Eqs. (46), (43),
and (40)) are relatively low due to the limitations of small
angle incidence, weak elasticity at a porous media interface, and
ignoring the second- and higher-order terms.

2) For the incident and scattering system of P-SV-B plane waves
(Fig. 1), under the assumption that various elastic waves and
corresponding incident angles meet Snell's law (Eq. (13)), the
incidence or scattering of the slow P-wave is very weakly
dependent on incident angle of the fast P-wave. Analyzing
approximate expression (Eq. A-6), approximate equation (Eq.
(17)), and accurate analytical expression (Eq. (21)), the expres-

sion of
�g
a

�2
,dp

2

r ¼ 2
�
b
a

	2�
2 Db

b
þDr

r

	
sin2 k in Eq. (40) tends to

zero, which show that the scattering coefficients of the slow P-
wave with the slow P-wave being incident do not depend on
incident angle of the fast P-wave (Fig. 11b and d).

3) As the fast P- and SV-waves depend on incident angle of the fast
P-wave, the scattering coefficients of converted waves related to
the slow P-wave are weakly dependent on the angle, e.g. the
slow P-wave scattering coefficients with the fast P-wave being
incident in Eq. (38) (Fig. 5b and d).

6. Conclusions

Pre-stack AVO inversion plays an important role in reservoir
prediction and fluid identification, and its theoretical basis is
Zoeppritz and Aki and Richards approximation. However, for
complex oil and gas reservoirs, the theoretical basis has certain
application limitations. As reservoir rock containing pores, the

Fig. 10. Scattering coefficient of the SV-wave with the slow P-wave being incident.
The meanings of the subgraphs are similar to that in Fig. 3. The black and blue dotted lines represent scattering coefficients calculated by exact analytical expression (Eq. (24)) and
first-order linear approximation (Eq. (43)), respectively.
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influence of rock pore's size, shape, diameter, and its filler on elastic
wave's response can not be ignored. Further study on the influence
of these factors is great significance to further solve the prediction
of complex oil and gas reservoirs and to improve the accuracy of
reservoir fluid identification. Based on previous achievements, this
paper studies the approximate scattering of elastic planewave at an
interface of porous media saturated with pore fluids. Firstly, the
incidence, reflection and transmission at an interface of porous
media are analyzed, and a complete system of incidence and
scattering of P-SV-B waves is established. Secondly, the kinematic
and dynamic boundary conditions at an interface of porous media
are constructed. Finally, exact analytical equation and expressions
of elastic plane wave for porous media are derived, respectively,
and the first-order linear approximate expressions are obtained
under various priori assumptions.

Unlike Zoeppritz equation and its approximate expressions,
which only considers the reflection and transmission characteris-
tics at the interface of single-phase media, the kinematic and dy-
namic characteristics of rock skeleton and pore fluids are
considered at the porous media interface. However, the case of
porous media is much more complex than that of single-phase
medium, and the derivation of the analytical equations or expres-
sions need to be based on a series of assumptions. Assumptions for
the derivation of analytical equation are: 1) The upper and lower
porous media are isotropic and uniform media; 2) The porous
media interface is a horizontal interface, and the upper and lower
rock skeletons are seamless contact; 3) The pores are completely
connected, and pore fluids are Newtonian fluids; 4) Pore fluid is
non-viscous fluid, and the interaction between rock skeleton and
pore fluid is not considered; 5) The fast P-, SV-, and slow P-waves
propagating in upper and lower porous media meet Snell's law.

Assumptions for the derivations of first-order approximate ex-
pressions are: 1) Various incident waves are incident with small
angles (usually below 40�); 2) The difference of elastic parameters
between upper and lower layers is small, that is, there is a weak
elastic hypothesis at an interface of porous media; 3) The constant
and first-order terms are retained, and others are ignored; 4) The
frequency of incident wave is in the range of seismic frequency, and
the slow P-wave is close to vertical incidence and scattering.

Combined with our research results, the inversion of pore fluid
parameters based on porous media theory can be realized. Real-
izing these parameters inversion can further solve the problem of
low identification accuracy of pore fluids in complex oil and gas
reservoirs. However, our research results are derived on the basis of
a series of assumptions, and there may still be some application
limitations for more complex reservoirs. This requires following
researchers to further consider the more complex situations of
porous media. For example, the upper and lower rock skeletons are
sliding, pores are not completely connected, pore fluids are viscous,
and are coupled with rock skeleton, etc. The research on analytical
theory of elastic plane wave for these complex porous media will
provide theoretical support for further solving the problems of oil
and gas identification, and improving the accuracy of oil and gas
exploration and development.
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Appendix A. Simplification and Approximation for Exact
Analytic Equation

The following relationships between the P- and SV-wave ve-
locities, density, bulk and shear moduli, and Biot's parameters can
be obtained (Russell et al., 2011).

ra2 ¼K þ a2M þ 4
3
m (A-1a)

rb2 ¼m (A-1b)

r¼ð1�40Þrb þ40rf ¼ rb þ 40
�
rf � rb

	
(A-2)

where, r; rb; rf denote the total density, rock matrix density, and
pore fluid density, respectively, and 40 is porosity.

Following the papers of Biot (1962), Russell et al. (2003), Dai
et al. (2006), and Zhou et al. (2020), within the seismic frequency
band, the ratios between displacement amplitude of pore fluid
relative to rock skeleton and that of rock skeleton generated by the
fast P-, SV- and slow P-waves can be approximately,

dP ¼K þ 4
3mþ a2M � rba

2

�aM þ rf a
2

z0 (A-3a)

dSV ¼m� rbb
2

rf b
2 z0 (A-3b)

dB ¼K þ 4
3mþ a2M � rbg

2

�aM þ rf g
2

z � ra2

aM
(A-3c)

Equations A-3 shows that compared with the displacement of
rock skeleton caused by the fast P-wave, the displacement of pore
fluids relative to rock skeleton can be ignored, while that caused by
slow P-wave can not be ignored. Without considering the viscosity
of pore fluids, the SV-wave can not cause the relative displacement
between pore fluids and rock skeleton.

Substituting Eqs. A-1~A-3 into the relevant parameter group in
the coefficient matrix of Eq. (15), the following approximate ex-
pressions are obtained,

1
a

��
K þa2Mþ dPaM�2

3
m

�
þ2m

�
1�a2p2

	�
zra

�
1�2b2p2

	
(A-4a)

1
g

��
K þa2M�2

3
mþ dBaM

�
þ2m

�
1�g2p2

	�
zrg

�
1�2b2p2

	
(A-4b)

�
aþ dP

�
M

a
z
aM
a

(A-5)

When the incident wave frequency is within the seismic fre-
quency band, the relationship among the velocities of the fast P-,
SV-, and slow P-waves is g≪b<a. By substituting this into Eq. (13),
the following approximate equation can be obtained,

k≪j< i; sin k ¼ g

a
sin i/0

cos kz1
(A-6)

Appendix B. Solving Approximate Analytical Equation

For solving the approximate analytic Eq. (17c), it is necessary to
first solve the inverse problem of the two-dimensional (2D) and
three-dimensional (3D) block matrices. Equations B-1 and B-2 (Lu,
2010) can be used to obtain the 2D and 3D block inverse matrices,
respectively.

�
A B
C D

��1
¼

2
64 C�1

�
AC�1 � BD�1

	�1
A�1

�
CA�1 � DB�1

	�1

�D�1
�
AC�1 � BD�1

	�1 �B�1
�
CA�1 � DB�1

	�1

3
75 (B-1)

2
4A B C
D E F
G H K

3
5�1

¼
�
A�1 þ PT�1Q PT�1

T�1Q T�1

�
(B-2)

Here,

P ¼
h
�A�1B �A�1C

i
;

Q ¼
"
�DA�1

�GA�1

#
;

T ¼
"
E� DA�1B F� DA�1C

H� GA�1B K� GA�1C

#
$

From Eq. B-2, we know that obtaining the inverse matrix of T is the
key to solving the 3D inverse block matrix. As submatrix of T is a 2D
block matrix, by substituting the elements in matrix T into Eq. B-1,

and fully considering submatrix of H ¼
�
0 0
0 0

�
, we can deduce,

T�1 ¼
�
S11V2D

�1 �S11
S21V1D

�1 S21

�
(B-3)

S11 ¼
�
D�1E� A�1B

	�1ðV1 þ V2Þ�1 (B-4a)

S21 ¼
�
D�1F� A�1C

	�1ðV1 þ V2Þ�1 (B-4b)

V1 ¼GA�1B,
�
D�1E� A�1B

	�1
(B-5a)

V2 ¼
�
K�GA�1C

	�
D�1F� A�1C

	�1
(B-5b)

Substituting Eq. B-3 into Eq. B-2, the 3D inverse block matrix
(Eq. B-2) is finally derived as,

2
4A B C
D E F
G H K

3
5�1

¼

2
664
A�1 þ A�1

"
BS11ðV2 � GÞ
þCS21ðV1 þ GÞ

#
A�1 �A�1ðBS11V2 þ CS21V1ÞD�1 A�1ðBS11 � CS21Þ

�S11ðV2 � GÞA�1 S11V2D
�1 �S11

�S21ðV1 þ GÞA�1 S21V1D
�1 S21

3
775 (B-6)
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Substituting Eq. B-6 into Eq. (17c), the following expression can
be obtained,

Solving Eq. B-7, and fully considering relationships among 2D
submatrices A � K (Eq. B-8), the expressions of submatrices C1D �
C9D can be derived as in Eq. B-9.

�
D�1E�A�1B

	
S11 ¼

�
D�1F�A�1C

	
S21 (B-8a)

D�1ðES11 � FS21Þ¼A�1ðBS11 �CS21Þ (B-8b)

D�1ES11 þA�1CS21 ¼ A�1BS11 þ D�1FS21 (B-8c)

Appendix C. Analytical Solutions of Submatrix and Its
Composite Forms

For obtaining the complete analytical expressions of scattering
coefficients (Eqs. (19)e(27)), only the nine submatrices in Eq. (18)
need to be solved independently. In the process of substituting li-
thology parameters and pore fluid parameters of upper and lower
media into Eq. (18), the solution operation of the submatrices and
their composite expressions will be involved. The relevant analyt-
ical expressions are,

A�1 ¼ 1
�a1a2p,a

2
64 r2a2

�
1� 2b22p

2
	

�a2p

r1a1

�
1� 2b21p

2
	

�a1p

3
75; (C-1a)

D�1 ¼ 1
cos i1 cos i2,p,d

2
4 2r2b

2
2p cos i2 �cos i2

�2r1b
2
1p cos i1 cos i1

3
5 (C-1b)

A�1B¼ 1
�a1a2p,a

� �a2,b,cos j1 a2,r2,cos j2
�a1,r1,cos j1 a1,c,cos j2

�
(C-1c)

A�1C¼
�
g1=a1 0

0 g2=a2

�
; (C-1d)

GA�1B¼ 1
�p,a

,

�
0 0

ðl,r1 � s,bÞcos j1 �ðl,c� s,r2Þcos j2

�
; (C-2a)

GA�1C¼
�

0 0
s,g1 �l,g2

�
(C-2b)

D�1E¼ 1
cos i1 cos i2,p,d

��b1,c,cos i2 �b2,r2,cos i2
b1,r1,cos i1 b2,b,cos i1

�
(C-2c)

D�1F¼ 1
cos i1 cos i2

�
cos i2 0
0 cos i1

�
: (C-2d)

D�1E�A�1B¼ b1b2
adp,cos i1 cos i2

2
6664
�a2
b2

cos i2
a2

,Q �a2
b1

cos i2
a2

,r2G

a1
b2

cos i1
a1

,r1H
a1
b1

cos i1
a1

,R

3
7775 (C-3a)

�
D�1E� A�1B

	�1 ¼ ap
~X

2
6664

a1
b1

cos i1
a1

,R
a2
b1

cos i2
a2

,r2G

�a1
b2

cos i1
a1

,r1H �a2
b2

cos i2
a2

,Q

3
7775 (C-3b)

A�1BþD�1E¼ b1b2
adp,cos i1 cos i2

2
6664

�Q
0

b2
cos i2 �r2G

0

b1
cos i2

r1H
0

b2
cos i1,

R
0

b1
cos i1

3
7775: (C-3c)

D�1F�A�1C¼ 1
a1a2 cos i1 cos i2

�
a2,g,cos i2 0

0 a1,h,cos i1

�
(C-4a)

�
D�1F� A�1C

	�1 ¼ 1
gh

�
a1h cos i1 0

0 a2g cos i2

�
(C-4b)

2
664
C1D C2D C3D

C4D C5D C6D

C7D C8D C9D

3
775 ¼

2
6664
A�1 þ A�1½BS11ðV2 � GÞ þ CS21ðV1 þ GÞ�A�1 �A�1ðBS11V2 þ CS21V1ÞD�1 A�1ðBS11 � CS21Þ

�S11ðV2 � GÞA�1 S11V2D
�1 �S11

�S21ðV1 þ GÞA�1 S21V1D
�1 S21

3
7775,
2
664
�A �B �C

D E F

�G 0 K0

3
775

(B-7)

2
664
C1D C2D C3D

C4D C5D C6D

C7D C8D C9D

3
775 ¼

2
6666666664

�
n
Iþ A�1B,C4Dþ A�1C,C7D

o
�
n
A�1BðIþ C5DÞ þ A�1C,C8D

o
�
n
A�1B,C6Dþ A�1C,ðIþ C9DÞ

o

2S11V2
1
2
,C4D,

�
A�1Bþ D�1E

	
� S11GA

�1B C4D,D�1F� S11K
00

2S21V1 C7D,D�1E
1
2
,C7D,

�
A�1Cþ D�1F

	
þ S21

�
GA�1Cþ K

0	

3
7777777775

(B-9)
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D�1FþA�1C¼ 1
a1a2 cos i1 cos i2

�
a2ða1þg1 cos i1Þcos i2 0

0 a1ða2þg2 cos i2Þcos i1

�
:

(C-4c)

K�GA�1C¼

2
64
dB1 dB2

U
g1

� V
g2

3
75 (C-5a)

K0 þGA�1C¼

2
64

dB1 dB2

�U
g1

V
g2

3
75: (C-5b)

V1 ¼ � 1
~X

2
64 0 0�

~R
cos j1
b1

þ ~H
cos j2
b2

�
cos i1

�
~G
cos j1
b1

þ ~Q
cos j2
b2

�
cos i2

3
75 (C-6a)

V2 ¼
1
gh

,

2
64
dB1,a1,h,cos i1 dB2,a2,g,cos i2

U
g1

,a1,h,cos i1 � V
g2

,a2,g,cos i2

3
75 (C-6b)

V1 þV2 ¼
1
gh

"
dB1a1,h cos i1 dB2a2,g cos i2

~Ucos i1 �~Vcos i2

#
(C-6c)

ðV1 þ V2Þ�1 ¼ gh

ð~Dþ ~VÞcos i1 cos i2

2
4 ~Vcos i2 dB2a2,g cos i2
~Ucos i1 �dB1a1,h cos i1

3
5 (C-6d)

S11 ¼
ap,gh

~Xð~Dþ ~VÞ
,

2
6664

1
b1

ðR~V þ r2G~UÞ 1
b1

�
R,ga2,d

B
2 � r2G,ha1,d

B
1

	

� 1
b2

ðr1H~V þ Q ~UÞ � 1
b2

�
r1H,ga2,d

B
2 � Q,ha1,d

B
1

	
3
7775 (C-7a)

S21 ¼
1

~Dþ ~V

2
4 ~V,ha1 gh,a1a2,d

B
2

~U,ga2 �gh,a1a2,d
B
1

3
5 (C-7b)

The expressions of relevant parameters involved in analytical
expressions of the submatrices in Eqs. C-1~C-7 are shown in
Tables C-1 and C-2.

Appendix D. Weak Elastic Assumption on a Porous Media
Interface

For further simplify Eqs. (19)e(27), we use the analytical idea of
Aki and Richards (1980) for reference, and change the upper and
lower parameters of porous media as follows,

angles

8><
>:

i ¼ 1
2
ði2 þ i1Þ; j ¼ 1

2
ðj2 þ j1Þ; k ¼ 1

2
ðk2 þ k1Þ;

Di ¼ i2 � i1; Dj ¼ j2 � j1; Dk ¼ k2 � k1;
(D-1a)

velocities

8<
: a ¼ 1

2
ða2 þ a1Þ b ¼ 1

2
ðb2 þ b1Þ g ¼ 1

2
ðg2 þ g1Þ

Da ¼ a2 � a1 Db ¼ b2 � b1 Dg ¼ g2 � g1:

(D-1b)

Biot

8<
:a ¼ 1

2
ða2 þ a1Þ M ¼ 1

2
ðM2 þM1Þ

Da ¼ a2 � a1 DM ¼ M2 �M1

(D-1c)

others

8><
>:

r ¼ 1
2
ðr2 þ r1Þ dB ¼ 1

2

�
dB2 þ dB1

	
Dr ¼ r2 � r1 DdB ¼ dB2 � dB1:

(D-1d)

where, a represents the mean of the fast P-wave velocities, and Da
denotes the difference of the fast P-wave velocities, and other pa-
rameters represent similar meanings.

Under the assumptions of weak elasticity and small angle inci-
dence at the interface of porous media, the values of Di, Dj, and Dk
are minimal, and there are the following approximate
relationships,

cos
1
2
Diz1;

1
2
Dizsin

1
2
Diztan

1
2
Di;

(D-2a)

cos
1
2
Djz1;

1
2
Djzsin

1
2
Djztan

1
2
Dj;

(D-2b)

Table C-1
Parameter expressions similar to Aki and Richards (1980) in exact analytical
expressions

Parameters Expressions Parameters Expressions

a r2ð1 � 2b22p
2Þ� r1ð1 � 2b21p

2Þ b r2ð1 � 2b22p
2Þþ

2r1b
2
1p

2

c r1ð1 � 2b21p
2Þþ 2r2b

2
2p

2 d 2ðr2b22 � r1b
2
1Þ

G a� d
cos i1
a1

cos j2
b2

G
0

aþ d
cos i1
a1

cos j2
b2

H a� d
cos i2
a2

cos j1
b1

H
0

aþ d
cos i2
a2

cos j1
b1

Q acþ bd
cos i1
a1

cos j1
b1

Q
0

ac� bd
cos i1
a1

cos j1
b1

R abþ cd
cos i2
a2

cos j2
b2

R
0

ab� cd
cos i2
a2

cos j2
b2

E b
cos i1
a1

þ c
cos i2
a2

F b
cos j1
b1

þ c
cos j2
b2

~X r1r2GH � QR
d

¼ � aðEF þ
GHp2Þ

Table C-2
Parameter expressions related to pores and pore fluids in exact analytical
expressions

Parameters Expressions Parameters Expressions

s a1M1

a21

l a2M2

a22
g a1 � g1 cos i1 h a2 � g2 cos i2
U ða1 þ dB1ÞM1 � s ,g2

1zða1 þ
dB1ÞM1

V ða2 þ dB2ÞM2 � lg2
2zða2 þ

dB2ÞM2
~R ðlr1 � sbÞR ~H ðlc � sr2Þr1H
~G ðlr1 � sbÞr2G ~Q ðlc � sr2ÞQ
~U U

g1
,ha1�

gh
~X

�
~R
cos j1
b1

þ ~H
cos j2
b2

�
~V V

g2
,ga2þ

gh
~X

�
~G
cos j1
b1

þ ~Q
cos j2
b2

�
~D ~Vha1d

B
1

~V ~Uga2d
B
2

~M ~VdB1 þ
U
g1

ga2d
B
2

~N �
~U � U

g1
ha1

�
dB1

~O �
~V � V

g2
ga2

�
dB2

~P ~UdB2 þ
V
g2

ha1d
B
1

~A R,ga2,d
B
2 � r2G,ha1,d

B
1

~B r1H,ga2,d
B
2 � Q,ha1,d

B
1
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cos
1
2
Dkz1;

1
2
Dkzsin

1
2
Dkztan

1
2
Dk;

(D-2c)

Substituting the transformation relationships (Eq. D-1) and
approximate expressions (Eq. D-2) into the ray parameter expres-
sion (Eq. (13)), the following approximate relationships can be
derived,

tan
1
2
Diz tan i,

Da
2a

; (D-3a)

tan
1
2
Djz tan j,

Db
2b

; (D-3b)

tan
1
2
Dkz tan k,

Dg
2g

; (D-3c)

Equation D-3 shows that the sinusoidal function of the differ-
ence between incident angles of an elastic wave in upper and lower
media is directly proportional to reflection coefficient term of the
wave velocity, which is consistent with that derived by Wang
(1999) in Eq. (6).

As the exact analytical expressions of scattering coefficients
(Eqs. (19)e(27)) involve a series of parameters in Table C-1 and C-2,
we need to replace equation D-1, D-2, and D-3 into that in C-1 and
C-2, and obtain the first- and second-order approximate expres-
sions of the relevant parameters. Among them, the first-order
approximate expressions of p, d, a are,

pz
sin i
a

; (D-4a)

dz2rb2
�
2
Db
b

þDr
r

�
; (D-4b)

a¼Dr� dp2; (D-4c)

Here, the first-order approximate expression of the ray param-
eter p only has a constant term, and its first-order term is zero, and
that of a and d have only first-order terms, and their constant terms
are zero.
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