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a b s t r a c t

Deep learning is widely used for seismic impedance inversion, but few work provides in-depth research
and analysis on designing the architectures of deep neural networks and choosing the network hyper-
parameters. This paper is dedicated to comprehensively studying on the significant aspects of deep
neural networks that affect the inversion results. We experimentally reveal how network hyper-
parameters and architectures affect the inversion performance, and develop a series of methods which
are proven to be effective in reconstructing high-frequency information in the estimated impedance
model. Experiments demonstrate that the proposed multi-scale architecture is helpful to reconstruct
more high-frequency details than a conventional network. Besides, the reconstruction of high-frequency
information can be further promoted by introducing a perceptual loss and a generative adversarial
network from the computer vision perspective. More importantly, the experimental results provide
valuable references for designing proper network architectures in the seismic inversion problem.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic impedance inversion has been studied for decades as it
is one of the most effective methods for reservoir characterization
in seismic exploration. It aims at reconstructing impedance se-
quences from their corresponding seismic traces which is based on
the forward model:

szw*r; (1)

where s is a seismic tracewhich is approximated as the convolution
of a wavelet w and a reflectivity sequence r. Impedance i and
reflectivity r have the following relationship:

r½k� ¼ i½k� � i½k� 1�
i½k� þ i½k� 1� (2)

where i½k� represents the value of vertical impedance sequence at
depth k. Solving i from s is an underdetermined problem (Jackson,
1972), so traditional methods (Hu et al., 2009; Zhang and Castagna,
y Elsevier B.V. on behalf of KeAi Co
2011; Zhang et al., 2013) use different regularization to constrain
solution space, and also many structure-guided methods are pro-
posed (Ma et al., 2012; Zhang and Revil, 2015; Zhou et al., 2016;Wu,
2017). Although these methods are widely used in the industry,
some drawbacks still remain as the regularization terms need to be
pertinently designed which may limit the generalization of the
model. Besides, these model-driven methods usually need to solve
an optimization problemwhich is time-consuming and often yields
a smooth result. In addition, the wavelet w in Equation (1) is
typically unknown and might be hard to estimate as it is often
varying in time and space. In practice, the relationship between the
recorded seismogram and the true impedance is much more
complicated than the simple convolution model described in
Equations (1) and (2). The acquisition limitations, potential mea-
surement errors, processing errors, and noise make the impedance
estimation from seismograms a highly nonlinear problem with
large uncertainties. Therefore, a data-driven deep learning method
is expected to estimate the complicated and nonlinear relationship
between the seismic traces and impedance sequences.

In recent years, Deep Learning (DL) has an explosive develop-
ment in Computer Vision (CV) (Krizhevsky et al., 2012). Various
architectures and skills (Szegedy et al., 2015; He et al., 2016; Huang
et al., 2017) are proposed to promote the benchmarks in this area.
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Other fields, such as medicine, meteorology, remote sensing as well
as seismic exploration, also benefit from the development and
make significant breakthroughs (Zhao, 2018, 2019; Di et al., 2018,
2019; Wu et al., 2019, 2020). Compared with traditional model-
driven methods, the advantage of DL mainly lies in that feature
learning, extraction and prediction are all included in an end-to-
end process, which avoids tedious manual design and achieves
less errors by jointly optimizing all parameters. Consequently,
many DL-based methods (Das et al., 2018; Wang et al., 2019a,b;
Phan and Sen, 2018; Biswas et al., 2019; Alfarraj and AlRegib,
2019b,a; Zheng et al., 2019) are put forward to solve the seismic
impedance inversion. The critical technology is Convolutional
Neural Network (CNN) whose basic idea is to hierarchically extract
features using stacked convolution layers and nonlinear activations.
Due to the strong feature representation ability of CNN, DL-based
methods are able to more accurately approximate the relation-
ship between the seismograms and impedance sequences and
therefore can generatemore accurate inversion results. However, in
most cases, CNNs are used as black boxes, few work performs in-
depth research on how to appropriately design an effective and
efficient DL mechanism for the inversion problem.

In this paper, we focus on further research on DL-based inver-
sion methods. The in-fluence of various network hyperparameters
and architectures on the inversion results is explored. Specifically,
we carry out comparative experiments on three basic hyper-
parameters (i.e., kernel sizes, number of channels and layers) and
Fig. 1. A conventional CNN which contains 6 convolutional layers, the input is a
seismic trace and the output is an impedance sequence.

Fig. 2. (a) a seismic-impedance training pair. (b) a cros
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twomulti-scale architectures, and make comprehensive analysis of
the experimental results. In addition, we design a series of methods
inspired by perceptual losses (Johnson et al., 2016) and Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) to promote the
high-frequency information. The contributions of this paper can be
summarized as follows:

. We provide important bases for inversion network design by
revealing the influence of network hyperparameters and
structures on inversion performances.

. We show a clear clue to address the inversion of high-frequency
details by borrowing ideas from CV, and achieve the desired
results.
2. Methods

As a data-driven technology, DL-based methods learn mapping
functions from seismograms to impedance sequences. We use the
conventional CNN as the baseline, based on which other architec-
tures and techniques are developed step by step to improve the
inversion performance.
2.1. Conventional CNN

2.1.1. Architecture
CNN consists of stacked convolutional layers as shown in Fig.1. A

convolutional layer can be defined as follows:

xl ¼ s
�
xl�1 *wl þbl

�
; (3)

wherewl and bl represent the kernel and bias at the l�th layer, and
xl�1 and xl are the input and output, respectively. In addition, we
use Parametric Rectified Linear Unit.

(PReLU) (He et al., 2015) as the nonlinear activation sðxÞwhich is
formulated as
sline seismic section. (c) an inline seismic section.



Fig. 3. Inversion results of a seismic trace with different hyperparameters. The red
solid curve and black dashed curve represent the true and predicted values respec-
tively. (a) results with different kernel sizes. (b): results with different number of
channels. (c) results with different number of layers.
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sðxÞ ¼
�
x; if x>0
0:25x if x � 0

: (4)

The most intuitive inversion method is using 1-dimensional
CNN as a mapping function from a seismic trace to an impedance
sequence. Unlike model-drivenmethods, training the CNN requires
a lot of training data.

2.1.2. Dataset
The seismic data and well logs that we use in this paper are

extracted from the freely available Teapot Dome dataset (Anderson,
2009). The seismic data is already converted to depth domain and
matched with the well logs. Hundreds of wells are provided along
with the seismic data, however, in our experiments of seismic
impedance estimation, we choose only the wells that contain both
velocity and density logs with significant long depth ranges.
Consequently, we choose totally 27 wells and extract the seismic
traces near thewells to obtain 27 pairs of impedance sequences and
seismograms, in which 22 paris are randomly selected to train our
DL networks for the impedance estimation and the remaining 5
pairs are used as validation set. Fig. 2a shows one of the training
data pairs where the smooth blue curve represents a seismogram
while the red curve with more details denotes a target impedance
sequence that we expect to estimate from the seismogram. Fig. 2b
and c shows a crossline and inline seismic sections that are
extracted from the original 3D seismic volume. These two seismic
sections are used in this paper to demonstrate effectiveness of our
trained neural networks for the impedance estimation.

2.1.3. Experiments
Hyperparameters have a great impact on the CNN performance.

In order to figure out the network design principles for inversion
problem, we study three key parameters including kernel size,
number of layers and channels which are related to network
structure. In the experiments, we adopt the Adadelta (Zeiler, 2012)
optimizer with initial learning rate of 0.1, and the learning rate
decays to 0.9 times every 50 epochs. The batch size is set to 8. The
Mean Squared Error (MSE) is used as loss function, whose formula
is as follows:

[MSE ¼ 1
NK

XN
n¼1

kin � f ðsnÞ k22 (5)

where in and f ðsnÞ are the true and predicted impedances of the
n-th training pair, k,k2 is the [2 �norm operator, N is the number of
training pairs, K is the signal length. Note that all the input seismic
traces and target impedance sequences are normalized by sub-
tracting mean and being divided by standard deviation. All exper-
iments adopt the above settings by default.

First, we fix the number of convolution layers to 5 and channels
of each layer to 16, and observe the effect of the kernel size on the
inversion result. The kernel size increases from 5 to 23 with steps of
6. As shown in Fig. 4a and b, the larger the kernel size, the better the
network convergence. We also observe that larger kernel size
brings more high-frequency information as shown in Fig. 3a.

We then adjust the output channel of each layer from 8 to 64,
and fix the kernel size to 11 and the number of layers to 5. We
observe a trend similar to the kernel size experiment shown in
Fig. 4c and d. Networks with more channels can converge to lower
training losses, but they converge to the same level of validation
loss as the epoch increases. Despite this, their visual effects on the
predicted impedance sequences are quite different as shown in
1021



Fig. 4. Training and validation loss curves. Left column: training loss. Right column: validation loss. Top row: loss curves with different kernel sizes. Middle row: loss curves with
different number of channels. Bottom row: loss curves with different number of layers.
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Fig. 3b. We can see that high frequency is getting richer, as the
number of channels increases, especially within the depth window
between 160 and 180.

Furthermore, we study the effect of the number of layers on the
inversion results. In this experiment, kernel size and channels of
each layer are fixed to 11 and 16 respectively, and the number of
layers arranges from2 to 16 inmultiples of 2. Fig. 4e and f shows that
shallow network with 2 layers is underfitting. When the number of
layers increases to8, thenetwork achieves thebest convergence. It is
worthnoting that theperformanceof thenetworkwith16 layershas
a great degradation. But this is not caused by overfitting since both
the training and validation losses are degraded. The reason is that
deeper architecture brings huge challenges to the gradient back-
propagation (He et al., 2016). From the visual effects in Fig. 3c, the
results of #layers ¼ 2 and 16 are underfitting, and result of
#layers ¼ 4 yields more details than that of#layers ¼ 8.

In general, increasing the complexity of the architecture can
improve the network's representation ability, but such improve-
ment is limited. Different hyperparameters may lead to different
visual effects. Therefore, it is necessary to consider various factors
when designing the network. In order to compare all the methods
designed in later chapters, we use a conventional CNN with kernel
size of 13, channels of 16 and layers of 6 as a baseline model.
1022
2.2. Multi-scale architecture

A conventional CNN uses a fixed kernel size to extract seismic
features at a specific scale, which limits the feature representation.
To improve the multi-scale representation capability of the
network, we propose two methods in this chapter.

2.2.1. Multi-scale CNN
Inspired by the inception module (Szegedy et al., 2015), a Multi-

Scale CNN (MSCNN) is designed as shown in Fig. 5. It is composed of
a stacked multi-scale block which is marked by a red frame, where
the input feature is parallelly feeded into three conventional layers
with different kernel sizes, the three-way output features are then
concatenated in channel dimension to form the final output of the
multi-scale block. The MSCNN can extract multi-scale features of
seismic traces block by block, and uses a normal conventional layer
to calculate the impedance in the end of the network.

2.2.2. UNet
UNet (Ronneberger et al., 2015) is another multi-scale archi-

tecture which is originally proposed to solve the image segmen-
tation. As shown in Fig. 6, the UNet has two basic components:
encoder and decoder. The encoder is similar to the backbone of a



Fig. 5. MSCNN with three stacked multi-scale blocks. Three shades of blue rectangle stand for features extracted by convolutional layers with three different kernel sizes, and the
bottleneck containing the three rectangles represents the concatenated features.

Fig. 6. UNet Architecture. The k; c; s stand for kernel size, number of output channels and stride respectively. The pool and tconv represent max pooling and transpose con-
volutional layers respectively.
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classification network, which consists of conventional layers and
max pooling layers. A max pooling layer down samples features
with stride of 2 and obtains larger-scale seismic representations.
The decoder acts as an upsampling process which uses transpose
convolution as the upsampling operator. In the decoder, each
upsampled feature is concatenated with the feature of the same
scale in the encoder. This concatenation contributes to high-
resolution information reconstruction.

2.2.3. Experiments
To make a relatively fair comparison of the baseline CNN,

MSCNN and UNet, we keep their parameter amounts at the same
level. For MSCNN, we use 5multi-scale blocks whose kernel sizes of
three ways are 7, 13 and 19, and each way has 5 output channels.
The kernel size of the final conventional layer is 11. For UNet, the
hyperparameters are shown in Fig. 5. Parameter amounts of the
three methods are given in Table 1.

The same inversion experiments are executed on the three
methods. Fig. 7 shows that the three methods converge to almost
Table 1
Parameter amounts of the three methods.

Parameter amounts

Method Baseline MSCNN UNet
# of parameters 13814 12151 13600
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the same level on the training set, but MSCNN and UNet perform
better on the validation set. This means the three networks have
the same learning ability since they consist of the similar number of
parameters, but multi-scale architectures show better
generalization.

The first column of Fig. 8 shows the trace inversion results of the
three methods. We can observe that MSCNN and UNet obtain
relatively better results than the conventional CNN, especially
within the depth window between 140 and 180 where the CNN
yields highly smooth predictions. The same observation can be
found in the first column of Fig. 13 and Fig. 14, where the layers,
especially those thin ones, can be hardly resolved as the conven-
tional CNN yields smooth predictions with limited details in the
vertical dimension.
2.3. Perceptual loss

Even though the multi-scale methods achieve better results
than the baseline model, they all lose much high-frequency infor-
mation. This is because they all trained by using MSE loss function
which is easy to produce smoothness. From the perspective of the
CV, MSE only penalizes Euclidean distance between two images,
but ignores the image content. To overcome this problem, we
introduce the perceptual loss (Johnson et al., 2016), which mea-
sures content similarity, into the networks.



Fig. 7. Training and validation loss curves of the baseline, MSCNN and UNet.

Fig. 8. Trace inversion results by different methods. Top row: The baseline CNN.
Middle row: MSCNN. Bottom row: UNet. First column: The pure networks. Second
column: Networks with perceptual loss. Third column: Networks with GAN.
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2.3.1. Definition
Seismic impedance inversion can be considered as a signal

reconstruction problem which is similar to the image super-
resolution, where it recovers the high-frequency impedance from
a low-frequency seismic trace. The perceptual loss states that the
reconstructed image should be similar to the ground truth not only
in pixels, but also in the feature domain. The common idea is using
a pre-trained network, e.g., VGG-16 (Simonyan and Zisserman,
2014), as a loss network to extract the features in different layers,
and calculating the Euclidean distance between the true and pre-
dicted features to measure the content difference. The perceptual
loss experimentally proves the effectiveness of reconstructing
high-frequency information.

Inspired by the above ideas, we design a simple autoencoder as
the loss network as shown in Fig. 9. The autoencoder has the same
structure with the UNet, but there are no links from encoder to
decoder. Its hyperparameters of each layer are displayed in the
figure. The autoencoder learns a mapping function from the
impedance to itself. In other words, the input and output of the
network are the same impedance. The main purpose is to extract
proper features at different scales as shown in Fig. 9, then we can
use the features to calculate the perceptual loss which is defined as
follows:

[lP ¼ 1
NK

XN
n¼1

k4lðinÞ � 4lðf ðsnÞÞ k22 (6)

where 4lðiÞ is the l� th layer's feature of the impedance i extracted
by the loss network.

2.3.2. Experiments
We train the autoencoder using the impedance sequences of

training set with the same implementation as the previous exper-
iments. Fig. 10 shows the reconstruction performance of the
autoencoder, we can see that all the curves are well fitted. It should
be noted that we add small Gaussian noise on the training samples
1024



Fig. 9. Training with perceptual loss. The inversion network in the dashed box can be any architecture. The black and red traces are predicted impedance f ðsÞ and true impedances i
respectively. Three layers are used as the endpoints to export features which is represented by 4lð ,Þ, where the subscript l represents the layer index.

Fig. 10. The recovered impedance sequences by the autoencoder for the validation set. The red and black curves are the input ground truth and output predictions respectively.
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at each step to release the overfitting in all experiments, since the
size of training set is small.

By combing the MSE and perceptual losses, we can train the
networks by the following loss function:

L ¼ [MSE þ lp þ [lP (7)

where lp is the weight factor of the perceptual loss. We conduct a
series of experiments to study how to select lp and l. The baseline
model is used as the inversion network. First, the lp is fixed to 1.0,
and we use different endpoints (i.e., l ¼ 2; 4; 6) as the feature
extraction layers. The results in Fig. 11a shows that when l reaches
6, the ability to reconstruct high-frequency information is limited.
The results of l ¼ 2;4 obtain relatively better details for depth
around 170. Thenwe set l ¼ 2, and increase lp from 0.01 to 10.0 by a
1025
factor of 10. We can see from Fig. 11b that as the weight of the
perceptual loss increases, more details are reconstructed, but some
peak values may exceed the ground truth, e.g., for depth at 100 and
120 with lp ¼ 10.0.

The above observations validate the effectiveness of the
perceptual loss. But we need to make a balance between detail
reconstruction ability and amplitude fitting stability. We use l ¼ 4
and lp ¼ 1.0 as the default setting to make comparisons with other
methods. The first two columns of Fig. 8 are the inversion results of
the three architectures with or without perceptual loss, which il-
lustrates that perceptual loss improves the reconstruction of high-
frequency information a lot. Besides, we have a consistent obser-
vation on the inversion planes in Figs.13 and 14, inversion planes by
using perceptual loss have more and clearer horizons than that
using the pure MSE loss.



Fig. 11. Inversion results by using different endpoint layers l and weight lp .
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2.4. GAN

The previous methods focus on the design of backbones and loss
functions to achieve desired results, which demonstrates that the
developments and techniques in CV field can be used to tackle the
seismic inversion problem. Following this clue, we further explore
how to estimate more realistic impedance sequences by using GAN
which achieves great success in image generation.
1026
2.4.1. Architecture
GAN has two basic modules: generator and discriminator as

shown in Fig. 12. The generator can be any inversion network and it
aims at fooling the discriminator. The discriminator is a classifica-
tion network, and it should distinguish between the real traces and
traces produced by the generator as much as possible. The two
modules form an adversarial mechanism during the training pro-
cess, as a result the generator produce realistic impedance



Fig. 12. GAN Architecture. The generator is an inversion network that generates impedance sequences from seismic traces. The discriminator distinguish between generated and
real impedance sequences. The hyperparameters of the discriminator are given in the yellow frame, where h and fc stand for number of hidden node and fully connected layer
respectively.
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sequences, and the discriminator could not distinguish between
true and generated sequences.

There is a strong correlation between seismic inversion and
image super-resolution problems, as both of them reconstruct
high-frequency signals from low-frequency signals. So we refer to
Enhanced Super-Resolution GAN (ESRGAN) (Wang et al., 2018) as a
reference to design an inversion GAN. The discriminator architec-
ture and hyperparameters are given in Fig. 12. The final fully con-
nected layer has only one hidden node as it is a binary classification
network. Different from the standard classification, we use the
Relativistic average Discriminator (RaD) (Jolicoeur-Martineau,
2019) to predict the realistic degree of generated impedance rela-
tive to true impedance. The RaD is formulated as follows:

D
�
ir; ig

�¼ d
�
fDðirÞ� Eig

�
fD
�
ig
���

; (8)

where ir and ig are the real and generated impedances, fDðiÞ rep-
resents the output of final fully connected layer for impedance i,
Eig ½ ,� represents the average value of the generated impedances in

a mini-batch. dð ,Þ is the sigmoid function. An ideal discriminator
makes DRa

�
ir ; ig

� ¼ 1 and DRa
�
ig ; ir

� ¼ 0. Then the discriminator
loss is defined as:

L D ¼ �Eir
�
log

�
D
�
ir; ig

� � �� Eig
�
1� log

�
D
�
ig; ir

� � �
: (9)

The adversarial loss of generator is defined as:

[GAN ¼ �Eir

�
1� log

�
D
�
ir; ig

� � �� Eig

�
log

�
D
�
ig; ir

� � �
: (10)

The total loss for generator is then defined as follows:

L G ¼ [MSE þ lp[
l
P þ lg[GAN (11)

where lp and lg are weight factors for perceptual and adversarial
losses respectively. In the training process, the generator and
discriminator are alternately updated by minimizing L G and L D.
2.4.2. Experiments
In order to speed up convergence, we first train an inversion

network with MSE loss using the default setting, and then use the
pre-trained model as an initial generator. The parameters lp, lg, l
are empirically set to 1.0, 7e-3, 4. The initial learning rates of
generator and discriminator are 0.7 and 0.9, and they decays by
factors 0.95 with decay steps of 50 and 100 respectively. The GAN is
trained for 1000 epochs. We adopt the three networks, i.e., CNN,
MSCNN, UNet, as the generator of the GAN. The trace inversion
results are shown in Fig. 8, we can see that GANs recover more
details than pure networks and they have the similar visual effect to
1027
the networks with perceptual loss. But according to the plane
inversion results in Figs. 13 and 14, GANs generate finer layers than
other two methods especially within the depth window between
50 and 250. In addition, GANs produce some dark layers (with low
impedances) near the depth of 200 which can not be observed in
the results by the other methods.

3. Discussion

The hyperparameter experiments on the conventional CNN
demonstrate that networks with more parameters show stronger
fitting ability from the two perspectives of the number of channels
and kernel size. But this promotion tends to disappear as the
amount of parameters increase as shown in Fig. 4a, b, 4c, and 4d.
This is because the ability of each network to fit small dataset is
saturated. From the layer number perspective, as shown in Fig. 4e
and f, excessive increase in the number of layers leads to degra-
dation of convergence. A common view is that deeper network
makes gradient back propagation difficult, and even produce the
vanishing gradient problem (He et al., 2016). Fig. 3a, b and 3c
indicate that the curve fitting performance varies a lot with the
hyperparameters, which is mainly reflected in the reconstruction of
high-frequency details.

Using conventional CNN to solve the inversion problem is an
intuitive way. However it is hard to choose the proper hyper-
parameters, since the inversion result is hyperparameter-sensitive.
Multi-scale architecture can extract features at different scales and
therefore is able to recover more details than the conventional CNN
with the same number of parameters. As a result, multi-scale ar-
chitecture relieves the cost of hyperparameter selection. But we
note that even though the three methods converge to the same
level as shown in Fig. 7, they yield quite different visual effects in
the inversion sections as shown in the first columns in Figs. 13 and
14. Overall, multi-scale inversion sections show more thin layers,
but MSCNN and UNet produce different high impedance areas.
Therefore, it is important to adopt appropriate architectures.

From the inversion experiments, the key point is the recon-
struction of the high-frequency information. In the CV field, the
MSE loss is proven to produce smoothness, which can be improved
by the perceptual loss in Equation (6). In order to build an
impedance feature space which is used to calculated the perceptual
loss, we design an autoencoder that learns amapping function from
impedance to itself as shown in Fig. 9, and then extract the features
by the endpoints of the autoencoder. Figs. 8, 13 and 14 show that
perceptual loss provides a great contribution to reconstructing
high-frequency information. On the other hand, the endpoint layer
l and weight factor lp in Equation (6) also impose an effect on the
inversion results as shown in Fig. 11a and b. So a trade-off must be



Fig. 13. Inline inversion results by different methods. Top row: The baseline CNN. Middle row: MSCNN. Bottom row: UNet. First column: The pure networks. Second column:
Networks with perceptual loss. Third column: Networks with GAN.
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made between detail reconstructing and fitting stability. The GAN
experiments demonstrate that adversarial training mechanism
further promotes the reconstruction of details, and it generates
finer layers as shown in Figs. 13 and 14. Besides, some dark layers
with low impedance values appear in the GAN inversion results,
which may indicate its ability in recovering high-frequency
information.
1028
DL-based methods achieve promising results, but also show
some limitations. Different architectures produce various vision
effects, which may bring confusion to practical applications.
However, there is no objective evaluation index to indicate which
network should be used. The widely used MSE can provide a
reference to the fitting performance, but it produces much
smoothness. So it is necessary to build an evaluation function



Fig. 14. Crossline inversion results by different methods. Top row: The baseline CNN. Middle row: MSCNN. Bottom row: UNet. First column: The pure networks. Second column:
Networks with perceptual loss. Third column: Networks with GAN.
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related to structure and content of the impedance. The other
obvious problem is the lack of training data. In practice, the number
of well logs is highly limited, which often results in network
overfitting. Using some tricks, such as adding Gaussian noise,
cannot completely avoid the risk of overfitting. One way to address
this is building realistic structure models (Wu et al., 2020) to
1029
simulate more seismic and impedance pairs. The other meaningful
way is introducing the physical mechanism of Equation (1) into the
network architecture to make full use of seismic traces that do not
correspond to any true impedance sequences, which performs a
semi-supervised learning.
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4. Conclusion

This paper comprehensively studies the DL-based methods for
seismic impedance inversion problem. A series of networks are
designed to improve the reconstruction of high-frequency infor-
mation. Through experiments, we reveal the influence of the
network hyperparameter and architecture on the inversion per-
formance. The difference between conventional CNN and multi-
scale architecture in convergence, trace fitting and vision effect
are well studied. Inspired by the developments in the CV field, we
adopt perceptual loss and GAN mechanism which are proven to be
effective for enhancing high-frequency details. In spite of the suc-
cess of DL-based methods, they still show the aforementioned
limitations of objective evaluation index and training data. We plan
to solve these two issues in the future.
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