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Abstract Simultaneous-source acquisition has been recog-

nized as an economic and efficient acquisitionmethod, but the

direct imaging of the simultaneous-source data produces

migration artifacts because of the interference of adjacent

sources. To overcome this problem, we propose the regular-

ized least-squares reverse time migration method (RLSRTM)

using the singular spectrum analysis technique that imposes

sparseness constraints on the inverted model. Additionally,

the difference spectrum theory of singular values is presented

so that RLSRTM can be implemented adaptively to eliminate

the migration artifacts. With numerical tests on a flat layer

model and a Marmousi model, we validate the superior

imaging quality, efficiency and convergence of RLSRTM

compared with LSRTM when dealing with simultaneous-

source data, incomplete data and noisy data.

Keywords Least-squares migration � Adaptive singular

spectrum analysis � Regularization � Blended data

1 Introduction

A fundamental factor considered in seismic data acquisi-

tion is efficiency. Simultaneous-source acquisition uses

simultaneous shooting of two or more sources, resulting in

the advantages of high efficiency and allowing denser

source sampling and wider azimuths (Beasley 2008;

Hampson et al. 2008). However, simultaneous shooting

also produces blended data. There are mainly two ways to

deal with simultaneous-source data. One is deblending the

data (Mahdad et al. 2011; Chen et al. 2014; Chen

2015, 2016; Gan et al. 2016a; Zu et al. 2016) and then

processing the deblended data with conventional methods.

The other way is imaging the simultaneous-source data

directly without separation (Tang and Biondi 2009;

Berkhout et al. 2012; Chen et al. 2015). The velocity

analysis of simultaneous-source data can also be imple-

mented directly to obtain a precise velocity model in the

common-midpoint domain (Gan et al. 2016b). The second

approach has the advantage of high computational effi-

ciency, but it suffers from migration artifacts because of

the interference of adjacent sources.

Least-squares migration (LSM) is able to suppress the

migration artifacts and produce high-quality images

(Nemeth et al. 1999; Tang and Biondi 2009; Dai and

Schuster 2013; Li et al. 2014, 2015a; Liu and Li 2015;

Huang et al. 2013, 2015a). However, the computational

cost of LSM is high as it is solved by gradient-based

optimization schemes (Huang et al. 2015b; Huang and

Zhou 2015; Li et al. 2016a). The computational efficiency

and imaging quality can be improved by incorporating

some sort of regularization into the LSM (Wang et al.

2009; Liu et al. 2013; Wang 2013; Li et al. 2015b; Lu et al.

2015). Structural constraint is an effective approach which

can attenuate the migration artifacts while preserving the

information of subsurface structures. Within angle-domain

common-image gathers, Kuehl and Sacchi (2003) propose

to use a smoothing operator along the ray parameter axis to

suppress migration artifacts. This approach can also be

implemented with structure-preserving constraints to

improve the migration results (Wang and Sacchi 2009).
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The angle-domain common-image gathers need more

computation and storage, so Xue et al. (2015) employ

structure-enhancing filtering (Liu et al. 2010; Swindeman

and Fomel 2015) as a shaping regularization operator for

effectively removing noise. The structure-enhancing filter

is also used as a preconditioning operator that updates the

image only along prominent dips (Chen et al. 2015; Dutta

and Schuster 2015), but the success of this approach sig-

nificantly depends on the estimated dips.

Motivated by the excellent denoising performance of

singular spectrum analysis (SSA) (Sacchi 2009; Oropeza

and Sacchi 2010, 2011; Huang et al. 2014), we propose to

incorporate a regularization term using SSA into least-

squares reverse time migration (LSRTM) that eliminates

migration artifacts caused by simultaneous-source data,

incomplete data and noisy data. In order to make the SSA

more efficient for large models, we divide large inverted

images into several subsections by small spatial windows.

Another problem of SSA is the difficulty to properly

truncate singular values. The singular values are always

selected manually by some criterion, for example, the

number of linear events in the analysis window (Oropeza

and Sacchi 2011). So we introduce the difference spectrum

theory for adaptively determining the proper number of

useful components.

In this paper, we first derive the forward modeling and

migration operator of simultaneous-source data, and then

present the theory of regularized least-squares reverse time

migration (RLSRTM). The numerical tests on a flat layer

model and a Marmousi model were carried out to compare

RTM, LSRTM and RLSRTM when dealing with simulta-

neous-source data, incomplete data and noisy data. The

numerical tests demonstrate the validity and superiority of

the proposed method.

2 Method

2.1 Modeling and migration of simultaneous-source

data

The forward modeling operator of simultaneous-source

data is first derived according to the single shot forward

modeling. The relation between the observed seismic data

without blending and the reflectivity model can be

expressed as

d1
d2
..
.

dN

2
6664

3
7775 ¼

L1

L2

..

.

LN

2
6664

3
7775m ð1Þ

where di and Li denote the observed data and forward

modeling operator related to the ith shot; m denotes the

reflectivity model. In LSRTM, the forward modeling

operator is a linear operator with the Born approximation

(Dai et al. 2012).

Two or more sources are excited simultaneously in the

simultaneous-source acquisition. Assuming there are n

super shots in a two-dimensional survey and each super

shot consists of k sources, the blended seismic data can be

expressed as
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where Dj represents the jth super shot while L j;i represents

the demigration (forward modeling) operator correspond-

ing to the ith source in the jth super shot.

The sources in the simultaneous-source acquisition can

be generated either completely simultaneous or nearly

simultaneous. The nearly simultaneous shooting method is

distinguished from the completely simultaneous shooting

method by a nonzero time-delay between adjacent sources.

Introducing the time-shifting matrix into Eq. (2), we get

the forwarding modeling operator of the nearly simulta-

neous-source shooting method,
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where sj;i denotes the time-shifting matrix corresponding to

the ith source in the jth super shot. Equations (3) and (2)

become equivalent when sj;i equals to a unit matrix, which

represents the completely simultaneous shooting method.

Then, we rewrite the forward modeling of the simulta-

neous-source data with a simplified form,

D ¼ Sm ð4Þ

where S denotes the forward modeling operator of the

simultaneous-source data.

The adjoint of the forward modeling operator can be

written as,

62 Pet. Sci. (2017) 14:61–74

123



ST ¼ ST1 ; S
T
2 ; . . .; S

T
n

� �

¼
Xk
i¼1

LT
1;is

T
1;i;

Xk
i¼1

LT
2;is

T
2;i; . . .;

Xk
i¼1

LT
n;is

T
n;i

" #
ð5Þ

where the superscript T denotes the conjugate transpose

operator.

So the RTM operator of the simultaneous-source data is
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where mmig denotes the migration result of the simultane-

ous-source data. The first term in Eq. (6) is the image of

subsurface structures while the second term is the cross-

term noise.

2.2 RLSRTM using SSA

LSRTM can produce high-quality and high signal-to-noise

ratio (SNR) images by iteratively updating the migration

results close to the real reflectivity model. On the basis of

the construction of the forward modeling and the migration

operator of the simultaneous-source data, the misfit func-

tion of RLSRTM can be written as,

JðmÞ ¼ 1

2

Xn
i¼1

Sim� Dik k2 þ k
2
RðmÞ ð7Þ

where k denotes the regularization parameter which con-

trols the tradeoff between the data term residual and the

regularization term. The regularization parameter can be

evaluated from the L-curve whose corner is used as a

suitable regularization parameter (Rezghi and Hosseini

2009). However, this approach needs to compute the

inverse problem several times to plot the L-curve, so it is

too expensive to be practical for LSRTM. We propose that

an a priori k is selected to keep the ratio of the data term

gradient to the regularization term gradient c a fixed value

and 0\c\1. Since the data residual will decrease with an

increase in iteration, the regularization parameter should be

dynamic to prevent oversize regularization. RðmÞ repre-

sents the regularizer that imposes constraints on the solu-

tion m. These constraints are used to ensure that m should

be sparse or the reflectors in m should be sharp. Here, we

assume that RðmÞ¼ Wmk k2 is the weighted reflectivity

model while the weighting matrix W would preserve the

interfaces of subsurface structures and eliminate the noise,

then Eq. (7) can be rewritten as,

JðmÞ ¼ 1

2

Xn
i¼1

Sim� Dik k2 þ k
2

Wmk k2 ð8Þ

In this paper, we define Wm as the SSA denoising of m.

Generally, the seismic signals have better coherence

compared with the noise, so the noise in the migration

results can be eliminated by SSA (Sacchi 2009; Oropeza

2010). The gradient to solve Eq. (8) is,

oJðmÞ
om

¼
Xn
i¼1

STi Sim� Dð Þ þ kWTWm ð9Þ

Both RLSRTM and LSRTM are performed iteratively

using the preconditioned conjugate-gradient algorithm

(Nemeth et al. 1999). Two preconditioners, illumination

compensation (Plessix and Mulder 2004; Li et al. 2016b)

and high-pass filtering (Li et al. 2016b), are employed to

improve the migration results.

2.3 Adaptive SSA denoising

The basic assumption made by SSA can be summarized in

a few words. If the seismic data consist of a complex

events, the associated Hankel matrix of the data is a matrix

of rank a (Hua 1992). When the data contain noise, the

rank of the Hankel matrix will increase. So the denoising

problem of seismic records can be attributed to the rank

reduction issues of the Hankel matrix (Sacchi 2009; Oro-

peza 2010). SSA denoising can be implemented with the

following steps (Sacchi 2009; Oropeza 2010). First, apply

Fourier transform to the inverted image,

Mðx; kÞ ¼ 1

2p

Zþ1

�1

mðx; zÞe�ikzdz ð10Þ

where mðx; zÞ denotes the imaging results.

Denote Mk ¼ ½M1;M2;M3; . . .;MNx
�T as a spatial vector

of a given wavenumber k of the signal. The vector can be

organized in a Hankel matrix,

M ¼

M1

M2

..

.

MLx

M2
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..

.

MLxþ1

� � �
� � �
. .
.

� � �
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..

.
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0
BBB@

1
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where Nx represents the number of traces of the imaging

results, and Lx and Kx are selected to make the Hankel

matrix approximately square. Here, Lx ¼ Nx=2þ 1,

Kx ¼ Nx � Lx þ 1.
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Then, apply singular value decomposition (SVD) to the

Hankel matrix,

M ¼ UrVT ð12Þ

where r, U, V denotes the singular values matrix and

singular vectors associated with the Hankel matrix.

A key problem of SSA is the difficulty to properly

truncate singular values. In this paper, we introduce the

difference spectrum theory which can effectively reflect the

difference of singular values of the useful components and

noise. Assuming the diagonal components of the singular

values matrix are denoted by ðr1; r2; r3; . . .;rjÞ, the dif-

ference spectrum of singular values is defined as,

B ¼ ðb1; b2; . . .; bj�1Þ
bi ¼ ri � riþ1; i ¼ 1; 2; . . .; j� 1

ð13Þ

The difference spectrum reflects the changes of two

adjacent singular values, and the peak position in the dif-

ference spectrum refers to the abrupt change point of sin-

gular values. For a noise-free migration image containing

a complex events, the associated Hankel matrix of the data

is a matrix of rank a, and the peak of the difference

spectrum will exist at the ath point. Compared with the

useful signals, the noise always has worse coherence and

even smaller amplitude, thus corresponds to smaller sin-

gular values. In this case, the peak of the difference spec-

trum could be an effective indicator to preserve effective
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Fig. 2 Synthetic data for the flat layer model: a simultaneous-source data with completely simultaneous shooting; b simultaneous-source data

with nearly simultaneous shooting; and c common-shot data without blending
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signals while maximizing noise attenuation. The criterion

is same as using the numbers of linear events to truncate

singular values (Oropeza 2010), but we implement it

adaptively without human intervention. However, the dif-

ference spectrum may exhibit more than one peak value

when the events are curved or the inverted image is com-

plex, because the singular value components of the useful

signals are dispersed. In order to minimize this problem,

adaptive SSA denoising must be applied using windows in

space. In short windows, it is possible to consider a curved

event as linear. And, if multiple peaks cannot be avoided,

we will use the last peak point for the consideration of

preserving effective signals. Some examples of the adap-

tive SSA denoising are shown in the next section to test its

validity.

If the peak value of the difference spectrum is ba, the

first a largest singular values are intercepted to reconstruct

the Hankel matrix,

Ma ¼ UaraV
T
a ð14Þ
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Fig. 3 Synthetic test of adaptive SSA denoising with the flat layer model: a LSRTM result of the common-shot data in Fig. 2c; b RTM result of

simultaneous-source data in Fig. 2a; c denoising result of b; d singular spectrum curves and its difference spectrum curve. Notice that the

singular spectrum curves and the difference spectrum curves are plotted in semilogarithmic coordinates
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Once the rank reduced Hankel matrix is obtained, the

next step entails reconstructing the inverted image by

averaging components of the Hankel matrix across its anti-

diagonals (Sacchi 2009). Finally, we apply an inverse

Fourier transfer to the denoised data.

We should emphasize that SSA denoising needs addi-

tional computation, but the computational cost of SSA

denoising is negligible compared with the cost of LSRTM.

Even for a large size Hankel matrix, such as three-di-

mensional cases, it has been proven that dividing the data

into small cubes and adopting the randomized singular

value decomposition (RSVD) to perform the SVD can

significantly improve the computational efficiency (Rokh-

lin et al. 2009; Oropeza and Sacchi 2010, 2011). In this

paper, we focus on LSRTM for two-dimensional cases, so

SVD is used in the following simulations.

3 Examples

3.1 Flat layer model

In this section, an imaging test of a flat layer model is

implemented to demonstrate the validity of the proposed

method and make a comparison between the completely

simultaneous shooting method and the nearly simultaneous

shooting method. In this example, 10 super shots are

recorded by 300 receivers with a 10 m receiver interval.

Each super shot contains three sources with a 100 m source

interval. The real velocity shown in Fig. 1 is smoothed to

be the migration velocity. The data simulated by the

completely simultaneous shooting method and nearly

simultaneous shooting method are shown in Fig. 2a, b. It
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can be seen that every super shot is blended with three

single shots while there is a small time-delay between each

single shot in Fig. 2b.

Figure 3 shows the synthetic test of adaptive SSA

denoising with the flat layer model. Figure 3a is a clean

imaging result of the flat layer model, which is obtained by

LSRTM of the common-shot data without blending (shown

in Fig. 2c), Fig. 3b is the RTM result of simultaneous-

source data (shown in Fig. 2a), and the denoising result of

Fig. 3b is shown in Fig. 3c. Figure 3d shows the singular

spectrum curves and the difference spectrum curve, which

are plotted in semilogarithmic coordinates. All the singular
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spectrum curves in this paper are normalized by the first

singular value. The useful signals mainly distribute in the

first singular value component and the peak of the differ-

ence spectrum also exits in the first point. So the first

singular value and its corresponding singular vector are

used to recover the denoised data. It can be seen that the

noise is effectively eliminated by adaptive SSA denoising.

The imaging results of completely simultaneous-source

data are shown in Fig. 4. Figure 4a shows the LSRTM

result with 40 iterations which still suffers from some

migration artifacts. Figure 4b shows the RLSRTM image

with 25 iterations which exhibits higher quality image with

less noise. The singular spectrum curves are plotted in

Fig. 4c. The singular spectrum curve of RLSRTM result is
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more focused on the first point compared with RTM result,

indicating that the noise is less. Figure 5 shows the imaging

results of nearly simultaneous-source data in which we see

similar results compared with Fig. 4. But the cross-term

artifacts in Fig. 5 are a little weaker than those in Fig. 4,

because stacking the migration results from different super

shots can suppress the cross-term artifacts more effectively

when the time-delay between adjacent sources is not zero.

During the tests, the computer CPU was an

Intel(R) Xeon(R) E5-2650 v2 @ 2.60 GHz and the running

time of the serial program for LSRTM and RLSRTM with

one iteration is 555 and 559 s, respectively.

Figures 4 and 5 demonstrate that (1) direct imaging of

simultaneous-source data will introduce migration artifacts

which are related to the time-delay between adjacent

sources; (2) LSRTM and RLSRTM can suppress the

migration artifacts and compensate for unbalanced
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illumination in the RTM image, but RLSRTM produces

better images more efficiently compared with LSRTM.

3.2 Marmousi model

We used a more realistic Marmousi model to test the

proposed method (shown in Fig. 6). In this example, 20

super shots are simulated by firing three sources at the

same time in each shot. The sources are distributed evenly

with a 120 m source interval. The shot data shown in

Fig. 7a are recorded by 737 receivers with a 10 m receiver

interval. The real velocity shown in Fig. 6 is smoothed to

be the migration velocity.

We first test adaptive SSA denoising with the synthetic

data of the Marmousi model, and the result is shown in

Fig. 8. Figure 8a is the LSRTM result of the common-shot

data without blending (shown in Fig. 7b), Fig. 8b is the

RTM result of simultaneous-source data (shown in

Fig. 7a), which contains obvious migration artifacts, and

the SSA denoising result of Fig. 8b using spatial windows

is shown in Fig. 8c. Thirty windows are selected to cover

the entire image in space with 3500 m depth, overlapping

every 10 traces. Figure 8d shows the singular spectrum

curves and the difference spectrum curve from the imaging

results marked by the black rectangle area. From the

comparison of the singular spectrum of the clean image and

the noisy image, it is clear that the useful signals mainly

distribute in the first five singular value components while

the noise mainly increases the scale of small singular value

components. Thus, truncating the first five singular value

components can preserve effective signals and suppress

noise. As shown in Fig. 8c, most of the noise is suppressed

after applying adaptive SSA denoising to each windowed

image, but there is still some noise left on the image.

An LSRTM image with 40 iterations and its zoom view

are shown in Fig. 9a, b, which have higher imaging quality

than RTM result, but still contain migration artifacts. Fig-

ure 9c, d shows the RLSRTM image with 25 iterations and

its zoom view. The imaging quality of RLSRTM is com-

parable to LSRTM, but the noise in RLSRTM result is a

little less. In the test, the running time of the serial program

for LSRTM and RLSRTM with one iteration is 9094 and

9105 s, respectively. The singular spectrum curves from

RTM and RLSRTM results marked by the black rectangle

area in Figs. 8a and 9c are shown in Fig. 10a, in which the

singular spectrum curves of RLSRTM result are closer to
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the singular spectrum curve of the clean image shown in

Fig. 8d. In order to compare the convergence of LSRTM

and RLSRTM, we present the data residual convergence

curves for the simultaneous-source data with different

regularization parameters in Fig. 10b. The convergence

curves are plotted in semilogarithmic coordinates so that

we can see the differences between LSRTM and RLSRTM

more clearly. We notice that RLSRTM exhibits a faster

convergence rate than LSRTM in the majority of cases.

Only when c ¼ 1 are the convergence rates of LSRTM and

RLSRTM similar.

Figure 11 shows synthetic data for the Marmousi model

with 60% of the data missing. The RTM result of incom-

plete data shown in Fig. 12a, b contains more severe

migration artifacts compared with the RTM result of the

complete data. From the comparison of the results of

LSRTM and RLSRTM in Fig. 12c–f, we draw the conclu-

sion that LSRTM and RLSRTM can eliminate the migration

artifacts caused by the incomplete data, while RLSRTM is

more efficient in attenuating the migration artifacts com-

pared with LSRTM. Figure 13a shows the singular spec-

trum curves from the RTM and RLSRTM results marked by

the black rectangle area in Fig. 12a, e. The singular spec-

trum curve of RLSRTM result is more focused in the first

few points than the singular spectrum curve of RTM result,

indicating that RLSRTM result contains less noise. The data

residual convergence curves for incomplete data are pre-

sented in Fig. 13b, which shows that both the data residuals

of LSRTM and RLSRTM decrease fast and the conver-

gence of RLSRTM goes a little faster.

Finally, an imaging test of noisy simultaneous-source

data is presented. The noisy data in Fig. 14 are obtained by

adding Gaussian noise into the simultaneous-source data

with Eq. (15),

Dobsðx; tÞ ¼ Dðx; tÞ þ d � randðsizeðDÞÞ ð15Þ
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where randðsizeðDÞÞ denotes the Gaussian noise, d denotes

the noise level. In this example, we want to test the

robustness of the proposed method when the observed data

contain strong noise, with 0:1\d\1:0. The imaging

results of noisy data are shown in Fig. 15. As shown in

Fig. 15a, b, the Gaussian noise in the observed data also

introduces slight random noise in the RTM images. The

random noise cannot be suppressed but enhanced in the

LSRTM image with 25 iterations, because the Gaussian

noise cannot be predicted by the forward modeling oper-

ator, and will always remain in the data residual. However,

the result of RSLRTM with 25 iterations in Fig. 15e, f

exhibits less noise compared with the results of RTM and

LSRTM. This demonstrates that RLSRTM is effective in

producing high SNR images when the observed data suffer

from severe Gaussian noise. Figure 16a shows the singular

spectrum curves from the RTM and RLSRTM results

marked by the black rectangle area in Fig. 15a, e. It is clear

that the singular spectrum curve of RTM result is more

dispersed because of the influence of the noise. Figure 16b

shows the data residual convergence curves for noisy data.

We find that the data residual of LSRTM and RLSRTM

cannot be converged to below 0.9 because the severe noise

will always remain in the data residual.

4 Conclusions

We have proposed the regularized least-squares reverse

time migration method using the adaptive SSA technique

to solve the direct imaging problems of simultaneous-

source data, incomplete data and noisy data. Difference

spectrum theory is presented to implement SSA denoising

adaptively. It is important to note that adaptive SSA

denoising must be applied using spatial windows for better

results when the underground structures are complex. The

numerical tests on a flat layer model and a Marmousi

model indicate that RLSRTM is able to eliminate migration

artifacts efficiently and exhibits superior imaging quality

and convergence compared with RTM and LSRTM.

This work can be easily extended to three-dimensional

cases. We suggest that dividing the data into small cubes and

adopting the RSVD (Rokhlin et al. 2009; Oropeza and Sacchi

2010, 2011) to perform the SVD could be useful to avoid the

low computational efficiency problems of a huge Hankel

matrix. In addition, the damped multichannel singular spec-

trum analysis (Huang et al. 2016) can attenuate more noise

than traditional SSA. It can help improve the performance

when there is random noise in the blended data. Our next

work will take these methods into consideration.
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