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Abstract Dynamometer cards are commonly used to

analyze down-hole working conditions of pumping systems

in actual oil production. Nowadays, the traditional super-

vised learning methods heavily rely on the classification

accuracy of the training samples. In order to reduce the

errors of manual classification, an automatic clustering

algorithm is proposed and applied to diagnose down-hole

conditions of pumping systems. The spectral clustering

(SC) is a new clustering algorithm, which is suitable for

any data distribution. However, it is sensitive to initial

cluster centers and scale parameters, and needs to predefine

the cluster number. In order to overcome these shortcom-

ings, we propose an automatic clustering algorithm, fast

black hole–spectral clustering (FBH–SC). The FBH algo-

rithm is used to replace the K-mean method in SC, and a

CritC index function is used as the target function to

automatically choose the best scale parameter and clus-

tering number in the clustering process. Different simula-

tion experiments were designed to define the relationship

among scale parameter, clustering number, CritC index

value, and clustering accuracy. Finally, an example is

given to validate the effectiveness of the proposed

algorithm.

Keywords Sucker rod pumping systems � Fault

diagnosis � Spectral clustering � Automatic clustering �
Fast black hole algorithm

1 Introduction

Sucker rod pumping systems are the main artificial lift

methods in oil production. In practical oil production,

monitoring of the down-hole working conditions of the

sucker rod pumping systems mainly relies on manual

methods. This precludes real-time monitoring and the

operating costs are high. In order to monitor down-hole

working operations continuously in normal running, it is

necessary to use computers to replace the manual work. In

oilfields, dynamometer cards are commonly used to ana-

lyze down-hole working conditions. Nowadays, many

computer diagnosis methods have been used to achieve

intelligent identification of the dynamometer cards. These

include expert systems (Derek et al. 1988; Martinez et al.

1993), artificial neural networks (Rogers et al. 1990; Xu

et al. 2007; Tian et al. 2007a, b; de Souza et al. 2009; Wu

et al. 2011), rough set theory (Wang and Bao 2008), sup-

port vector machine (Tian et al. 2007a, b; Li et al. 2013a;

Yu et al. 2013), fuzzy theory (Li et al. 2013b, c), and

designed component analysis (Li et al. 2013b). The current

research mainly focuses on supervised learning methods,

which rely on manual work to select training samples.

Although the supervised learning maybe has higher clas-

sification accuracy, it is mainly dependent on high quality

training samples. In oil production, this has two short-

comings: firstly, it is easily affected by the subjective

experience of the technical staff; secondly, there are larger

workloads in manual classification of the training samples.

So, in order to reach a higher efficiency of monitoring the
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down-hole working conditions, the unsupervised learning

method is useful to decrease the dependence on the training

samples. In this paper, an unsupervised classification

method based on the FBH–SC clustering algorithm is

discussed.

The clustering algorithm is a commonly used unsuper-

vised learning method, which can realize automatically

classification of the data according to their characteristics

in a self-learning way. However, many commonly used

clustering algorithms (like: K-mean, fuzzy C-means

(FCM)) have some deficiencies, such as: (1) the clustering

results are sensitive to the shape of the data set; and (2) the

clustering number is needed to be set in advance according

to the prior knowledge.

The spectral clustering (SC) algorithm is a new type of

clustering algorithm based on graph theory. It can be

applied to data sets with any distribution shape and is

independent of the dimension of the data; the global opti-

mal solution can be obtained using the standard linear

algebra method by a clustering criterion in a relaxed con-

tinuous domain through the eigen decomposition of the

similarity matrix (Von Luxburg 2007). SC is a focus

research of the clustering analysis method (Alzate and

Suykends 2012; Fujiwara et al. 2012; Mirkin and Nasci-

mento 2012; Tasdemir 2012; Frederix and Van Barel 2013;

Lv and Feng 2013). However, it still has some deficiencies,

such as (1) the clustering results are sensitive to the initial

clustering centers; (2) the algorithm is sensitive to the scale

parameter (r) and (3) the clustering number (k) needs to be

set in advance. For the first one, Liu et al. (2012) proposed

a method based on fuzzy K-harmonic means which could

reduce the sensitivity to the initial centers to a certain

extent; however, the local optimal value cannot be solved

completely as the algorithm still uses the iterative optimi-

zation technique which is similar to the K-mean method.

For the second one, the clustering ensemble-based methods

(Zhang et al. 2008; Vega-Pons and Ruiz-Shulcloper 2011)

are used to solve the problem that the clustering results rely

on precise choice of the scale parameters, which uses dif-

ferent scale parameters in a given interval to obtain dif-

ferent clustering results and then merges them by an

integrated approach. For the third one, the clustering

validity index is used to evaluate the clustering results, of

which the maximum value or the minimum value is taken

when a most suitable cluster number is obtained (Bezdek

and Pal 1998; Breaban and Luchian 2011; Saha and Ban-

dyopadhyay 2012); however, this method also has some

deficiencies (Wang et al. 2012), such as (1) exhaustive

search of each k may bring huge computational cost and (2)

for each k, the global optimal solution of the clustering

results cannot be guaranteed.

Now, in current studies of the SC algorithm, dynamic

adjustment of k and optimal choice of r in the clustering

process is expected to be achieved. However, although the

clustering results are affected by both k and r, there is no

effective way to consider them together. So, in our study,

the clustering process is considered to be a combinatorial

optimization problem. A specified validity index is con-

sidered as the optimization goal, k and r is considered as

the solutions of the optimization process, of which the best

validity index corresponds to the best k and r. In this paper,

the fast black hole (FBH) algorithm is proposed to replace

the K-mean method in the SC algorithm. As the initial

clustering centers throughout the whole solution space, it is

effective to make the clustering results insensitive to the

initial centers. The CritC index function (Breaban and

Luchian 2011) is used as the optimization target whose

optimal value is used to determine the best k and r.

2 Background

In actual oilfield production, dynamometer cards are used

to analyze down-hole conditions of sucker rod pumping

systems according to the production experience of techni-

cal staff. Different fault types are reflected by different

graph shapes of the dynamometer cards. Taking some

typical dynamometer cards in actual production for

examples, ‘‘normal running’’ is reflected by ‘‘the above and

bottom of the curve is nearly parallel, and the same of the

left and right’’; ‘‘liquid shortage in the pump’’ is reflected

by ‘‘lack of right-bottom corner of the curve, the loading is

normal and the unloading is slower’’; ‘‘parting of rod’’ is

reflected by ‘‘shape of the curve is near flat, and the loading

drops’’; ‘‘oil of high viscosity’’ is reflected by ‘‘shape of the

curve is fat (round and convex)’’; ‘‘travelling valve leak-

age’’ is reflected by ‘‘like parabola, the loading is slower

and the unloading is faster’’; ‘‘standing valve leakage’’ is

reflected by ‘‘the upper portion of the curve is upward and

the two sides are round, the unloading is slower and the

loading is faster’’; ‘‘pump bumping (upstroke)’’ is reflected

by ‘‘the loading at the top dead point has a sudden

increase’’; ‘‘pump bumping (downstroke)’’ is reflected by

‘‘the loading at the bottom dead point has a sudden

increase’’; ‘‘sand production’’ is reflected by ‘‘zigzag pat-

tern of the curve with crest tips and rapid changes’’;

‘‘piston goes outside of the cylinder’’ is reflected by ‘‘lack

of right-top corner of the curve, the unloading happens

quickly’’.

In order to eliminate the effects of deformation, viscous

resistance, vibration and inertia of the sucker rod string, the

surface dynamometer card is first transformed into a down-

hole dynamometer card which can truly reflect the working

conditions of the subsurface pump. In this paper, we use

the Fourier coefficient method (Chen 1988; Li et al. 2013a)

to solve the one-dimensional wave equation proposed by
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Gibbs (Gibbs and Neely 1966) to complete this transfor-

mation. Then, graphic feature vectors of the down-hole

dynamometer card are used as the inputs of the fault

diagnosis model (in this paper, all feature vector sets we

use are extracted from the down-hole dynamometer card).

The transformation result of one surface dynamometer card

is shown in Fig. 1.

In some of our earlier works, two feature extraction

methods have been discussed, one is the curve moment-

based method (Li et al. 2013a) and the other is Freeman

chain code based method (Li et al. 2013b). These are

briefly introduced here.

1 Curve moment-based method According to the ‘‘Four-

point’’ analysis method which is commonly used in

actual oil production, the down-hole dynamometer card

is divided into four parts and then 7 invariant moment

features are extracted. So, a total of 28 eigenvectors are

used to describe the dynamometer card.

2 Freeman chain code-based method The boundary of

the down-hole dynamometer card is represented by the

Freeman chain code with 8 directions. 10 eigenvectors

are calculated by changes of the curvature and 2

eigenvectors are calculated from the maximum and

minimum load. So, these 12 important eigenvectors are

used to describe the dynamometer card.

In this paper, the unsupervised classification method is

used to diagnose down-hole working conditions of sucker

rod pumping systems. This does not rely on training sam-

ples for artificial classification. The classification error will

be reduced as the automatic classification of the data set

can be realized according to its global distribution modes

and data attributes. One key problem is to find a feature

vector set (data attributes) to distinguish different types of

down-hole dynamometer cards (distribution modes). All of

them with the same fault type can be divided into a class by

the automatic clustering algorithm. The above two feature

extraction methods are used to extract the curve eigen-

vectors of the experimental data (down-hole dynamometer

cards) to structure the data set (different fault types of

down-hole dynamometer cards with different data distri-

bution). Then the data set can be used to verify the effec-

tiveness of the proposed algorithm.

3 Basic theory

3.1 Spectral clustering (SC) algorithm

A SC algorithm based on a normalized Laplacian matrix

Lrw is used in this paper. Two goals can be achieved using

this algorithm: (1) finding a segmentation to make the

different types of data dissimilar and (2) finding a seg-

mentation to make the same type of data similar (Von

Luxburg 2007).

Algorithm 1 SC algorithm based on normalized La-

placian matrix Lrw.

Input: similarity matrix S 2 Rn�n, the number of cluster

categories k.

Output: the final clustering results A1, A2, …, Ak, that is

Ai 2 jjyj 2 Ci

� �
.

Step 1: Establish a similarity connection diagram of

samples, where W is its connection weights matrix;

Step 2: Calculate the normalized degree matrix D and

the normalized Laplacian matrix Lrw;

Step 3: For a generalized characteristic problem

Lrwu ¼ kDu, calculate eigenvectors u1, u2, …, uk of the

first k minimum eigenvalues;

Step 4: Let U 2 Rn�k be the matrix of u1, u2, …, uk by

column arrangement;

Step 5: For i = 1, 2, …, n, let y 2 Rk correspond to the

ith row vector of U;

Step 6: Use the K-mean algorithm to divide the samples

ðyiÞi¼1;...; n in Rk into k classes C1, C2, …, Ck.

3.2 Black hole (BH) algorithm

The black hole (BH) algorithm was proposed by Hatamlou

(2013) named after the ‘‘black holes’’ in astrophysics. It is a

new heuristic optimization algorithm which has better

performance than the particle swarm optimization (PSO)

algorithm and the gravitational search algorithm (GSA). In

the initialization stage, a group of candidate solutions is

generated randomly, called ‘‘star’’. Then the fitness func-

tion values of the population are calculated and the optimal

candidate solution is chosen whose fitness function value is
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Fig. 1 Transformation of one surface dynamometer card to the

equivalent down-hole dynamometer card
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the best in the population, called ‘‘black hole’’. After ini-

tialization, the stars around the black hole are absorbed by

it and movement of the stars toward the black hole can be

formulated by

xiðt þ 1Þ ¼ xiðtÞ þ rand � ðxBH � xiðtÞÞ; ð1Þ

where i = 1, 2, …, N; xiðtÞ is the location of the ith star at t

iteration, xiðt þ 1Þ is the location of the ith star at t ? 1

iteration; xBH is the location of the black hole in the search

space; rand is a random value in [0, 1]; N is the number of

stars.

If the fitness function value of one star is better than that

of the black hole when the stars move toward the black hole,

the black hole moves to the location of that star. Then the

BH algorithm will continue and the stars will move towards

the black hole in the new location. In some cases, the stars

may be sucked in by the black hole when the stars move

toward the black hole. If a star is sucked in, a new star

generates randomly in the search space at the same time and

then a new search is started. This way can keep the number

of stars constant. The radius of the black hole can be for-

mulated by

R ¼ fBH

,
XN

i¼1

fi; ð2Þ

where fBH is the fitness function value of the black hole; fi
is the fitness function value of the ith star; N is the number

of stars. The star will be sucked in by the black hole when

the distance between it and the black hole is less than R.

Algorithm 2 BH algorithm

Initialization: Randomly generate a population of stars in

the search space.

Step 1: For each star, calculate their fitness function value;

Step 2: Select the star that has the best fitness function

value as the black hole;

Step 3: Change the location of each star according to

Eq. (1);

Step 4: If the fitness function value of one star is better

than the black hole, interchange their locations;

Step 5: If a star is sucked in by the black hole, a new star

will generate randomly in the search space;

Step 6: If the terminal condition is satisfied, end the

iteration; otherwise return to Step 1.

4 Automatic clustering based on fast black hole-

spectral clustering (FBH–SC) algorithm

4.1 Fast black hole (FBH) algorithm

In the BH algorithm, a large amount of computation is

needed when calculating fitness function values of all

stars. When a star is sucked in by the black hole, a new

star generates randomly at the same time and the next

iteration starts. Then their fitness function values are

recalculated and the new black holes are repositioned. In

this process, it can be found that except only a few

sucked stars, the position of most stars do not change, so

their fitness function values have not changed. If they are

recalculated in a new iteration, the computation obvi-

ously increases. So, in order to solve this problem, we

propose the FBH algorithm. The fitness function values

of all stars are calculated in the initialization and then

only the fitness function values of new stars are recal-

culated in Step 5.

Algorithm 3 FBH algorithm

Initialization: Randomly generate a population of stars in

the search space, and calculate their fitness function

values.

Step 1: Select the star that has the best fitness function

value as the black hole;

Step 2: Change the location of each star according to

Eq. (1);

Step 3: If the fitness function value of one star is better

than the black hole, interchange their locations;

Step 4: If a star is sucked in by the black hole, a new star

will generate randomly in the search space, and their

fitness function values are recalculated;

Step 5: If the terminal condition is satisfied, end the

iteration; otherwise return to Step 1.

Next, the computation time of the BH algorithm and

FBH algorithm are compared in the following. Suppose that

both the number of iterations of two algorithms is MaxLoop,

each computation time of the fitness function values of all

stars is T, each computation time of the moving stars in the

FBH algorithm is t, as the number of the moving stars is far

less than the total number of the stars, so t � T. It is con-

sidered that each t is basically the same for MaxLoop iter-

ations. So, the computation time of the BH algorithm is

about T1 = MaxLoop 9 (T ? T) = 2 9 MaxLoop 9 T

and the FBH algorithm is about T2 = T ? MaxLoop 9

(T ? t) = (MaxLoop ? 1) 9 T ? MaxLoop 9 t. t can be

considered zero as t � T and T2 is approximately

equal to (MaxLoop ? 1) 9 T, which is obviously smaller

than T1.

4.2 FBH–SC algorithm

Now, we use the proposed FBH algorithm to replace

the K-mean method in the SC algorithm to solve the

problem that the clustering results are sensitive to the

initial centers. The proposed FBH–SC algorithm is as

follows:
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Algorithm 4 FBH–SC algorithm

Input: similarity matrix S 2 Rn�n, the number of the

cluster categories k.

Output: the final clustering results A1, A2, …, Ak, that is

Ai 2 jjyj 2 Ci

� �
.

Step 1: Establish a similarity connection diagram of the

samples, where W is its connection weights matrix;

Step 2: Calculate the normalized degree matrix D and

the normalized Laplacian matrix Lrw;

Step 3: For Lrwu ¼ kDu, calculate eigenvectors u1, u2,

…, uk of the first k minimum eigenvalues;

Step 4: Let U 2 Rn�k be the matrix of u1, u2, …, uk by

column arrangement;

Step 5: For i = 1, 2, …, n, let y 2 Rk correspond to the

ith row vector of U;

Step 6: Use the FBH algorithm to divide the samples

ðyiÞi¼1;...; n in Rk into k classes C1, C2, …, Ck.

4.3 FBH–SC-based automatic clustering algorithm

The proposed FBH–SC algorithm is an improvement of the

traditional SC algorithm, however, the problem of having

to pre-set of the number of cluster categories (k) and scale

parameter (r) still exists. So, in this paper, the clustering

process is considered to be a combinatorial optimization

problem and a proper validity index function is used as the

optimization target; the best k and r are obtained by

searching the optimal validity index value. In this paper,

the CritC index function is used as the optimization index

function which is defined as follows,

CritC ¼ ða � FÞleðkÞ; ð3Þ

where F ¼ 1=ð1þW=BÞ; B ¼
Pk

i¼1 Cij jdðCi; gÞ is a mea-

sure among different classes, W ¼
Pk

i¼1

P
d2Ci

dðCi; dÞ is a

measure within a class; a ¼ 2 � m=ð2 � mþ 1Þ, under the

same k, the greater m is, the greater CritC is, here m = 2;

leðkÞ ¼ log2ðk þ 1Þ þ 1; the value range of the CritC index

function is in [0, 1], and the greater CritC represents the

better clustering results.

Algorithm 5 FBH–SC-based automatic clustering

algorithm

Initialization: k and r are taken as solutions in the

clustering process, where k�
ffiffiffi
n
p

(n is the number of

samples) (Yu and Chen 2002; Wang et al. 2012),

r 2 ½0; 1�; randomly generate a population of stars in the

search space, and recalculate their fitness function values.

Step 1: Select the star whose CritC is the greatest as the

black hole;

Step 2: Change the location of each star according to

Eq. (1);

Step 3: If CritC of one star is better than the black hole,

interchange their locations;

Step 4: If a star is sucked in by the black hole, a new star

will generate randomly in the search space, and its CritC

is recalculated;

Step 5: If the terminal condition is satisfied, end the

iteration; otherwise return to Step 1.

5 Experiments

5.1 Computing environment and data set

The computer configuration is as follows: Microsoft Win-

dows 7, Intel Core 2 Duo E6570 @ 2.66 GHz, Samsung

2 GB DDR2 667 MHz. Five data sets are used, iris, wine,

and seeds in the UCI data base, data 1 and data 2 are

composed separately by the characteristic data of 126

dynamometer cards using two methods in Sect. 2 (‘‘data 1’’

stands for the characteristic data extracted by the curve

moment based method; and ‘‘data 2’’ stands for the char-

acteristic data extracted by the Freeman chain code based

method), shown in Table 1. The data distribution of data 1

and data 2 is shown in Fig. 2.

5.2 Comparison of BH–SC algorithm and FBH–SC

algorithm

The FBH algorithm is proposed to decrease the computa-

tional complexity of the BH algorithm. The comparison

results of two algorithms of the clustering accuracy and

computation time are given in Tables 2 and 3 (running 50

times respectively).

It can be seen from Tables 2 and 3, the clustering

accuracy of the FBH–SC algorithm is basically the

same as the BH–SC algorithm. However, its computa-

tion time is much less than that of the BH–SC algo-

rithm. So, while retaining reliable calculation results,

the FBH–SC algorithm can effectively decrease the

computation time.

Table 1 Characteristics of different data sets

Data sets Class Dimension Number

Iris 3 4 150

Wine 3 13 178

Seeds 3 8 210

Data 1 7 28 126

Data 2 7 12 126
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5.3 Relationship between k and CritC

An F index function is used as the fitness function, which is

defined as follows (Hatamlou, 2013),

FðO; ZÞ ¼
Xn

i¼1

Xk

j¼1

wij Oi � Zj

�� ��2
; ð4Þ

where n is the number of samples; k is the number of

cluster categories; Oi � Zj

�� ��2
is the distance between Oi

and its clustering center; wij denotes the weight of Oi

belonging to the jth class, if the sample belongs to the jth

class, wij is 1, else 0; wij has arbitrary value in interval (0,

1) in fuzzy clustering.

However, in our research, it is found that the correct

number of cluster categories cannot be obtained when the

F index function has its optimal value, shown in Fig. 3.

As shown in Fig. 4, the F index value of five data sets

gradually reduces along with increases of k when r = 0.22,

which is inconsistent with the actual classification. In fact,

for iris, wine and seeds, F is minimum when k = 3, and for

data 1 and data 2, F is minimum when k = 7. For the CritC

index function, the relationship between its value and k is

shown in Fig. 5.

As shown in Fig. 5, when r = 0.22, for iris, wine and

seeds, CritC is maximum when k = 3, and for data 1 and

data 2, it is maximum when k = 7. Then, when r takes

different values, their relationships are discussed below,

which are shown in Fig. 5.

As shown in Fig. 5, for the five data sets, although r
takes different values, the maximum value of CritC cor-

responds to the optimal k. So there exists a correspondence

relationship between the CritC index function and the

correct clustering number.

5.4 Relationship between k and clustering accuracy

Now, when r takes different values, the relationships

between k and the clustering accuracy of five data sets are

discussed below, which are shown in Fig. 6.
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Fig. 2 Data distribution of data 1 and data 2

Table 2 Comparison of the clustering accuracy (mean ± std)

Data set SC BH–SC FBH–SC

Iris 0.9109 ± 0.0014 (r = 0.21) 0.9279 ± 0.001339 (r = 0.21) 0.9277 ± 0.001299 (r = 0.21)

Wine 0.9742 ± 0.0011 (r = 0.29) 0.9788 ± 0.001617 (r = 0.29) 0.9787 ± 0.001557 (r = 0.29)

Seeds 0.9161 ± 0.0019 (r = 0.53) 0.9213 ± 0.007065 (r = 0.53) 0.9211 ± 0.006906 (r = 0.53)

Data 1 0.6844 ± 0.098 (r = 0.51) 0.8098 ± 0.03321 (r = 0.51) 0.8095 ± 0.03214 (r = 0.51)

Data 2 0.6912 ± 0.093 (r = 0.29) 0.8139 ± 0.01 (r = 0.29) 0.8114 ± 0.08104 (r = 0.29)

Table 3 Comparison of the computation time (mean ± std)

Data set BH–SC FBH–SC

Iris 289.39 ± 37.289 163.96 ± 5.04

Wine 388.96 ± 99.36 235.36 ± 66.54

Seeds 545.87 ± 161.95 311.47 ± 48.13

Data 1 439.39 ± 96.26 235.27 ± 51.51

Data 2 425.23 ± 40.08 233.63 ± 20.92
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As shown in Fig. 6, when r takes different values, the

optimal k corresponds to the highest clustering accuracy.

So, there exists a correspondence relationship between the

clustering accuracy and the correct clustering number.

5.5 Relationship between r and CritC

Next, the influences of different r on the CritC of five data

sets are discussed below.

For the sake of discussion, we take values of k are 2, 3,

4, and 5 in iris, wine, and seeds, and values of k are 6, 7, 8,

and 9 in data 1 and data 2. It can be seen from Fig. 7, for

iris, wine, and seeds, when k = 3, CritC has the optimal

values if r is taken values in a certain range; and for data 1

and data 2, when k = 7, CritC has the optimal values. So,

the CritC index function will have the optimal value if r is

chosen reasonably.

5.6 Relationship between r and the clustering accuracy

The influences of different r on the clustering accuracy of

five data sets are discussed below.

As shown in Fig. 8, for each data set, the optimal value

or suboptimal value of the clustering accuracy can be

obtained when a reasonable r is chosen. A comparison of

Figs. 8 and 9 shows that the interval of r having the

optimal index function values is contained in the interval of

r having the highest clustering accuracy, which illustrates

that it is reasonable to use the index function as the fitness

function to select the proper r. However, to some extent, it

can be seen that the clustering accuracy corresponding to

the interval of r having the optimal index value is not the

highest value, but the next highest one. It is because the

measurement of CritC is different from the clustering

accuracy, but its next highest value is also greater than the

clustering accuracy of other k under the same conditions.

Automatic clustering results of five data sets using FBH–

SC algorithm are given in Table 4.

It can be seen from Table 4, although the clustering

accuracy of the FBH–SC-based automatic clustering

algorithm is slightly below the highest clustering accuracy

of the BH–SC algorithm and the FBH–SC algorithm, k and

r need not to be set in advance in the proposed automatic

clustering algorithm. Moreover, parameters in the optimal

algorithm need not be set in advance. So the proposed

algorithm possesses better comprehensive performance.

6 Case study

The number of samples (down-hole dynamometer cards) of

the experimental data set is expanded to 228 of 11 classes,

which were collected from one oil well in one oilfield,

China. They are: ‘‘normal running’’ (for the purpose of

discussion, ‘‘normal running’’ is considered as one fault

type), 24 samples; ‘‘gas obstruction’’, 20 samples; ‘‘liquid

shortage in the pump’’, 24 samples; ‘‘parting of rod’’, 20

samples; ‘‘oil of high viscosity’’, 20 samples; ‘‘travelling

valve leakage’’, 20 samples; ‘‘pump bumping (upstroke)’’,

20 samples; ‘‘pump bumping (downstroke)’’, 20 samples;

‘‘standing valve leakage’’, 20 samples; ‘‘sand production’’,

20 samples; ‘‘piston goes outside of the cylinder’’ 20

samples. The second feature extraction method in Sect. 2 is

used to extract their characteristics, named by data 3. The

data distribution of the set data 3 is shown in Fig. 9.

One diagnostic dynamometer card is taken as an

example to show the effectiveness of the proposed method.

The diagnostic dynamometer card is shown in Fig. 10,

which is first transformed into the down-hole dynamometer

card.
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In Table 5, 12 eigenvector parameters are obtained

using the second feature extraction method in Sect. 2.

Let us consider the data 3 (228 samples) and the

diagnostic sample together as a new data set data 4 (229

samples). Then automatic clustering of the data 4 is

completed (running 10 times and taking the maximum

value of CritC) and the results are shown in Table 6 and

Fig. 11.
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As shown in Table 6, the correct clustering number and

the satisfied clustering accuracy can be obtained.

It can be seen from Fig. 11, the diagnostic sample

(marked by ‘‘q’’) is classified into the fault type of ‘‘liquid

shortage in the pump’’ automatically by the proposed

automatic clustering algorithm. In order to check the

accuracy of the diagnosis result, we analyze the curve

shape of the diagnostic sample according to the artificial

production experiences. The graph’s main characteristics

are described as ‘‘lack of the right-bottom corner, the faster

loading and the slower unloading’’, which has the main

characteristics of ‘‘liquid shortage in the pump’’. So, it is

basically consistent with the computer diagnosis results.

7 Conclusions

An automatic clustering algorithm based on the FBH–SC

algorithm is proposed in this paper. It is used to solve the
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Fig. 9 Data distribution of the set data 3

Table 4 Automatic clustering results of five data sets

Data set CritC Clustering

accuracy

Optimal

clustering

number (k)

Optimal scale

parameter (r)

Iris 0.1714 0.9133 3 0.4482

Wine 0.0647 0.9551 3 0.5906

Seeds 0.1318 0.9286 3 0.5205

Data 1 0.2322 0.8412 7 0.5102

Data 2 0.2238 0.8730 7 0.2946
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Fig. 10 The diagnostic dynamometer card

Table 5 12 eigenvector parameters of the diagnostic sample

Eigenvector parameters Values

Degree of zigzag 0.0600

Degree of bulge of the left-bottom corner 0.1144

Degree of bulge of the right-top corner 0.1270

Degree of flatness 0.1288

Degree of lack of the left-top corner 0.076

Degree of lack of the right-top corner 0.0250

Degree of lack of the right-bottom corner 0.1127

Degree of lack of the left-bottom corner -0.033

Degree of sharp-load of the left-top corner 0.1020

Degree of sharp-unloading of the right-bottom corner 0.1575

Degree of rapid-unloading of the right-top corner 0.0526

Degree of fatness -0.0031

Table 6 Automatic clustering results of data 4

Data set CritC Clustering

accuracy

The optimal

clustering

number (k)

The optimal

scale parameter

(r)

Data 3 0.234 0.9167 11 0.1346
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problem that in current studies fault diagnosis for down-

hole conditions of sucker rod pumping systems relies too

much on training samples. This algorithm is not limited by

any data distribution shapes and is insensitive to the initial

cluster centers. Besides, any parameters need not be set in

an optimal process. The CritC index function is used as the

target function to find the best k and r. According to the

analysis of the relationships among CritC, r, k and the

clustering accuracy of the five data sets, the proposed

algorithm is useful in an unsupervised learning mode.

However, although the proposed FBH algorithm has nearly

halved the operation time of the BH algorithm, it still takes

about 330 min for the set data 3 as the initial solution

throughout the whole search space and the mechanisms of

‘‘suck’’ and ‘‘generation’’ used in the solving process. So,

in the further work, we will focus on how to reduce the

operation time of the algorithm as much as possible. We

emphasize it is still a difficult problem to use an unsuper-

vised learning method to diagnose multiple faults for

down-hole conditions of sucker rod pumping systems.
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