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Abstract: A multi-objective optimization of oil well drilling has been carried out using a binary coded 
elitist non-dominated sorting genetic algorithm. A Louisiana offshore field with abnormal formation 
pressure is considered for optimization. Several multi-objective optimization problems involving two- 
and three-objective functions were formulated and solved to fix optimal drilling variables. The important 
objectives are: (i) maximizing drilling depth, (ii) minimizing drilling time and (iii) minimizing drilling 
cost with fractional drill bit tooth wear as a constraint. Important time dependent decision variables are: 
(i) equivalent circulation mud density, (ii) drill bit rotation, (iii) weight on bit and (iv) Reynolds number 
function of circulating mud through drill bit nozzles. A set of non-dominated optimal Pareto frontier is 
obtained for the two-objective optimization problem whereas a non-dominated optimal Pareto surface is 
obtained for the three-objective optimization problem. Depending on the trade-offs involved, decision 
makers may select any point from the optimal Pareto frontier or optimal Pareto surface and hence 
corresponding values of the decision variables that may be selected for optimal drilling operation. For 
minimizing drilling time and drilling cost, the optimum values of the decision variables are needed to be 
kept at the higher values whereas the optimum values of decision variables are at the lower values for the 
maximization of drilling depth.   

Kew words: Drilling performance, rate of penetration, abnormal pore pressure, genetic algorithm, multi-
objective optimization
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drill bit rotating time, trip time, connection time, cost of 
drill bits and rig cost. The drill bit rotating time depends on 
several drilling variables e.g., wellbore stability, class of 
drill bit, weight on bit, rotary speed of drill bit, drilling mud 
properties, hydraulics of drilling mud, drill bit tooth wear and 
drill bit bearing wear. Depending upon the drilling difficulties, 
the cost of drilling increases with depth in a parabolic manner 
up to about 3,000 meters, and then exponentially increases 
beyond 4,000 meters (Masseron, 1990). Therefore, marginal 
improvement in drilling cost may reduce exploration and 
development costs to a significant extent. 

To predict the rate of penetration (ROP) and the best set 
of operating drilling variables, different drilling models are 
proposed in terms of rock properties and drilling variables 
which are discussed in standard texts (Adams, 1985; Mitchell, 
1992; Bourgoyne et al, 2003). Graham and Muench (1959) 
determined the optimum values of weight on bit (WOB) and 
rotary speed (revolution per minute, rpm) of the drill bit to 
minimize the drilling costs based on field data. The most 
common and popular ROP model used in drilling industry is 
the dc-exponent method (Bingham, 1964) which was based 
on rock mechanics principles. Jordan and Shirley (1966) 
modified Bingham’s equation and proposed drillability 
function which depends on depth and strength of formation. 
Rehm and McClendon (1971) further modified Jordan and 
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1 Introduction
The technical cost of crude oil depends largely on the 

expenditures due to exploration, development and production 
operations. Among them, exploration expenditure is primarily 
due to geological and geophysical surveys along with drilling 
activities. Development expenditure normally includes the 
cost of amortization of several wells that must be drilled to 
produce hydrocarbon economically. The relative magnitude 
of exploration and development expenditure varies from 
field to field and depends on the difficulties present in the 
field. In general, exploration and development contribute 
approximately 50%-80% of total expenditure. In this regard, 
drilling also plays an important role and contributes 65%-
80% of exploration and development cost. Expenditures are 
also increasingly added to recover additional amounts of oil 
and gas for given hydrocarbon in place. Details of exploration 
and development expenditures for different oil wells have 
been discussed by Masseron (1990). The cost of drilling is 
usually expressed as the cost per footage or meterage drilled, 
and depends on type of rig used, geographic location and 
target drilling depth. Cost of drilling is also influenced by 
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Shirley’s ROP equation by incorporating the actual weight 
of drilling mud. This ROP model has an ability to detect 
and quantify abnormal pore pressure accurately. Bourgoyne 
and Young (1974) developed a comprehensive nonlinear 
drilling model to predict drilling performance, abnormal 
formation pressure and optimal operating drilling variables. 
They performed multiple regression analysis to determine 
the constants present in the drilling model using field data 
and developed a relatively simple analytical procedure to 
determine the best values of the operating drilling variables 
to minimize the cost of drilling. Reza and Alcocer (1986) 
developed a dynamic nonlinear, multi-dimensional and 
dimensionless drilling model for deep drilling applications 
using the Buckingham π-theorem (Buckingham, 1914). 
They proposed three equations for the drilling model, 
namely, rate of penetration, rate of bit dulling and rate of 
bearing wear involving several drilling variables for example 
WOB, rotary speed of the drill bit, bit diameter, bit nozzle 
diameter, bit bearing diameter, drilling fluid characteristics 
(particularly, density and viscosity), drilling fluid circulation 
rate, differential pressure between formation and bottom 
hole, rock hardness, bottom hole temperature and heat 
transfer coefficient. Maidla and Ohara (1991) developed an 
optimization technique based on Bourgoyne and Young (1974) 
using field data particularly WOB and the rotary speed of 
the drill string for a given roller-cutter bit to minimize the 
drilling cost for a single bit run. Iqbal (2008) presented a 
stepwise drilling optimization procedure using real time data 
for roller-cutter bit insertion. In this methodology, the WOB 
exponent was evaluated first for a given ROP, and then the 
optimum rotary speed of the drill string and WOB parameters 
were determined using correlations. Recently, Bahari and 
Baradaran (2007; 2009) have proposed to minimize drilling 
cost for the Iranian Khangiran gas field based on the ROP 
model of Bourgoyne and Young (1974). 

So far, drilling optimization studies are mostly based 
on minimizing the cost of drilling operation. However, the 
optimal drilling process operation is associated with several 
important conflicting and non-commensurate objectives 
that need to be optimized simultaneously in the presence 
of suitable constraints. In addition to minimize the cost 
of drilling, one may achieve the highest possible rate of 
penetration by minimizing the drilling time and maximizing 
the drilling depth simultaneously for a given degree of 
fractional wear of the drill bit tooth. The above objectives 
are mutually conflicting in nature, i.e., in order to maximize 
the rate of penetration by maximizing the drilling depth and 
minimizing the drilling time, it is difficult to minimize the 
cost of drilling at the same time for given fractional drill bit 
tooth wear. Therefore, oil well drilling operation is an ideal 
candidate for multi-objective optimization.

Multi-objective optimization has been a highly demanding 
research topic in last decade as most of the real-world decision 
making problems involve trade-offs between conflicting 
objectives. Over the years, the AI-based genetic algorithm 
(GA) has been used as a powerful tool for the optimization 
studies for scientists and engineers. Several researchers have 
extended the basic algorithm GA (Goldberg, 2001) to solve 
multi-objective optimization problems and the topic was 

reviewed by Deb (2001) and Coello Coello (2002). A popular 
algorithm used for multi-objective optimization problems is 
the elitist non-dominated sorting genetic algorithm (NSGA-
II) developed by Deb and his research group (Deb, 2001; Deb 
et al, 2002). Nowadays, NSGA-II has been applied to solve 
highly computer intensive problems in the field of petroleum 
engineering related problems (gas lift optimization: Ray and 
Sarker, 2007; Rashid, 2010; water flooding performance: Han 
et al, 2011; oil production planning: Singh et al, 2013). 

In this study, a model based on multi-objective drilling 
optimization has been implemented using the elitist non-
dominated sorting genetic algorithm. The drilling model of 
Bourgoyne and Young (1974) has been used to predict the ROP 
and fractional tooth wear. Pore pressure variation with true 
vertical depth (TVD) has been predicted using the field data 
of the Louisiana offshore formation to calculate the variation 
of drilling depth and fractional wear loss of the drill bit with 
drilling time, and has been used for optimization studies. 
Several multi-objective optimization problems are formulated 
involving conflicting objectives, namely, maximization of 
the final drilling depth, minimization of the final drilling time 
and minimization of the drilling cost. The drill bit tooth wear 
is the only constraint involved in the present optimization 
studies. The important decision variables associated with 
the drilling optimization problems are the trajectories (or 
histories) of (i) rotary speed of the drill bit, (ii) WOB, (iii) 
equivalent circulation density (ECD) and (iv) Reynolds 
number function based on the circulating drilling mud through 
the drill bit nozzle while drilling. It is also mentioned that this 
is the first study in the field of multi-objective optimization of 
oil well drilling involving conflicting objectives. 

2 Formulation
2.1 Mathematical model for drilling operation
2.1.1 Rate of penetration 

The drilling model proposed by Bourgoyne and Young 
(1974) is used to predict ROP while drilling. This model is 
simple and accurate involving most of the drilling parameters, 
such as nature of formation, type of drill bit and operating 
drilling variables (e.g., rotary speed of the drill bit, WOB, 
ECD, Reynolds number function based on the circulating 
drilling fluids through drill bit nozzles while drilling, and 
fraction of drill bit tooth wear). According to this model, the 
rate of penetration (ft/h) is given by the following nonlinear 
equation:
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Table 3 Details of the multi-objective optimization problems 
 

(1)

Details of the estimating model constants (i.e., a1 to a8) are 
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as described by Bourgoyne and Young (1974) and determined 
using non-linear multiple regression analysis. 
2.1.2 Drill bit tooth wear

In addition to the ROP model, prediction of the drill 
bit wear while drilling is also important. Usually, a drill 
bit replacement takes place if the fractional tooth wear of 
the drill bit is more than 75% of tooth height. A composite 
tooth wear equation can be obtained by considering tooth 
geometry, WOB and rotary speed of the drill bit. Thus, the 
instantaneous rate of tooth wear is given by the following 
equation (Bourgoyne and Young, 1974):

(2)
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Table 3 Details of the multi-objective optimization problems 
 

In the above equation, w/d is the weight on bit per inch 
of bit diameter, whereas (w/d)max is the bit weight per inch of 
bit diameter at which the bit tooth will fail instantaneously. 
H1, H2 and H3 are the tooth wear parameters for a given type 
of bit. Now, Eq. (2) is simplified to obtain the formation 
abrasiveness constant at h = 1 by the following equation:

  
(3)
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The abrasiveness factor τH is numerically equal to the 
hours of the tooth life if the bit operates at standard conditions 
i.e., a bit weight of 1000 lb per inch of bit diameter with 
speed of 100 rpm.
2.1.3 Drill bit bearing wear

The instantaneous rate of bearing wear depends on the 
condition of the drill bit while drilling and the rate of bearing 
wear also increases when the bearing surfaces are damaged. 
The bit bearing life is assumed to vary linearly with the rotary 
speed of the drill bit and WOB, and the corresponding drill bit 
bearing wear is expressed in the following form (Bourgoyne 
and Young, 1974):

(4)
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In the above equation, exponent b depends upon the type of bearing and the quality of drilling fluid used. The 

bearing constant, τB, is calculated from dull bit grading. Usually the drill bit tooth wearing takes place at a much faster 

rate than the bearing wear. So the present study considers only drill bit wear (i.e., Eq. 2) instead of drill bit bearing 

wear (i.e., Eq. 4) for the optimal analysis of drilling operation. Therefore, Eqs. (1) and (2) are the desired differential 

equations to predict the performance of drilling operation and solved simultaneously with appropriate initial conditions. 

In subsequent sections, w/d= W(t) is considered for simplification. 

2.2 Prediction of pore pressure 

To determine the drilled depth and drill bit wear (i.e., Eqs. (1) and (2)), it is necessary to know the variation of the 

pore pressure with true vertical depth (TVD). The pore pressure depends on fracture pressure gradient, Poisons ratio, 

density, surface porosity and porosity decline constant of the formation. The variation of the pore pressure with TVD is 

given by the following relation (Bourgoyne et al, 2003): 
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In Eq. (5), the fracture pressure gradient (ppgfr) usually increases with depth whereas Poisson’s ratio (µ) declines 

with the formation depth. Other parameters, namely, the surface formation porosity (0), the porosity decline rate 

constant (K) and the grain density (ppgg) are almost independent of the formation depth and assumed to be invariant 

with depth in the present study.  
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In the above equation, exponent b depends upon the 
type of bearing and the quality of drilling fluid used. The 
bearing constant, τb, is calculated from dull bit grading. 
Usually the drill bit tooth wearing takes place at a much 
faster rate than the bearing wear. So the present study 
considers only drill bit wear (i.e., Eq. (2)) instead of drill 
bit bearing wear (i.e., Eq. (4)) for the optimal analysis of 
drilling operation. Therefore, Eqs. (1) and (2) are the desired 
differential equations to predict the performance of drilling 
operation and solved simultaneously with appropriate initial 

conditions. In subsequent sections, w/d= W(t) is considered 
for simplification.

2.2 Prediction of pore pressure
To determine the drilling depth and drill bit wear (i.e., 

Eqs. (1) and (2)), it is necessary to know the variation of 
the pore pressure with TVD. The pore pressure depends on 
fracture pressure gradient, Poisons ratio, density, surface 
porosity and porosity decline constant of the formation. 
The variation of the pore pressure with TVD is given by the 
following relation (Bourgoyne et al, 2003):
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In Eq. (5), the fracture pressure gradient (ppgfr) usually 
increases with depth, whereas Poisson’s ratio (µ) declines 
with the formation depth. Other parameters, namely, 
the surface formation porosity (ϕ0), the porosity decline 
rate constant (K) and the grain density (ppgg) are almost 
independent of the formation depth and assumed to be 
invariant with depth in the present study. 

2.3 Parameter estimation for pore pressure
To know the variation of pore pressure with TVD, it is 

essential to determine K, ppgg, ppgfr, µ, and ϕ0 in Eq. (5). For 
this, the normalized weighted square of the errors (E) between 
the actual pore pressure and the predicted pore pressure 
is minimized at different drilling depths. The possible 
decision variables for this error minimization problem 
are: K, ppgg, ppgfr, µ, and ϕ0. Therefore, a single objective 
function optimization problem for pore pressure estimation is 
formulated and written as:
Problem 1

(6a)
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Subscript d in the objective function (Eq. (6a)) describes the desired value of the pore pressure gradient. The right 

hand side of Eq. (6a) is multiplied by a large weighting factor, w0, (Deb, 1995; Deb, 2001) which depends on the 

relative magnitude of square of the errors in the objective function.  

2.3 Drilling optimization 

For drilling optimization, several multi-objective optimization problems are formulated involving conflicting 

objectives. First a two-objective optimization problem is considered where minimizing the normalized final drilling 

time (tf/tref) is the first objective function and the maximization of non-dimensional drilled depth (Df/Dref) is the second 

objective function. Here, tf and Df are the final drilling time and drilled depth respectively for the given single drill bit 

run whereas tref and Dref are the constant reference final drilling time and depth for the single bit run respectively. The 

major decision variables that influence ROP during drilling operation are: (i) ECD: ρc(t), (ii) rotary speed of the drill bit: 

N(t), (iii) WOB: W(t) and (iv) Reynolds number of function of the circulating fluid through drill bit nozzles: Ref(t). N(t) 

and W(t) have direct influence on the rate of penetration whereas ρc(t) is manipulated to maintain the stability of the 

well bore at the bottom hole by adjusting the static mud density at the surface. Similarly, Ref is also manipulated in 

such a way that it will help to adjust drilling fluid properties and drilling fluid hydraulics while drilling. Reynolds 

number function based on drill bit nozzle, Ref(t), is defined by c

n350
q
d




 where μ, ρc, q and dn are the apparent viscosity 

at 10,000 s-1, ECD, mud circulation rate and the diameter of the drill bit nozzle are expressed in oil field units. 
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are all varying with drilled depth or drilled time. Usually, drilling is carried out till the specified fractional tooth wear 
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The second objective function, f2, involves the maximization of the final normalized drilled depth (Df/Dref) for a 

single bit run. Similarly to achieve the desired fractional tooth wear loss (i.e., hd), the objective function (f2) is written 

Subscript d in the objective function (Eq. (6a)) describes 
the desired value of the pore pressure gradient. The right hand 
side of Eq. (6a) is multiplied by a large weighting factor, w0,  
which depends on the relative magnitude of square of the 
errors in the objective function (Deb, 2001). 
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2.4 Drilling optimization
For drilling optimization, several multi-objective 

optimization problems are formulated involving conflicting 
objectives. First a two-objective optimization problem is 
considered where minimizing the normalized final drilling 
time (tf/tref) is the first objective function and the maximization 
of non-dimensional drilling depth (Df/Dref) is the second 
objective function. Here, tf and Df are the final drilling time 
and drilling depth respectively for the given single drill bit 
run, whereas tref and Dref are the constant reference final 
drilling time and depth for the single bit run respectively. The 
major decision variables that influence ROP during drilling 
operation are: (i) ECD: ρc(t), (ii) rotary speed of the drill bit: 
N(t), (iii) WOB: W(t) and (iv) Reynolds number of function of 
the circulating fluid through drill bit nozzles: Ref(t). N(t) and 
W(t) have direct influence on the rate of penetration, whereas 
ρc(t) is manipulated to maintain the stability of the wellbore 
at the bottom hole by adjusting the static mud density at the 
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it will help to adjust drilling fluid properties and drilling fluid 
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Subscript d in the objective function (Eq. (6a)) describes the desired value of the pore pressure gradient. The right 
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Subscript d describes the desired value of the fractional drill bit wear in the objective functions (Eqs. (9a) and (9b)) 

and constraint (Eq. (9e)).  

In addition to above two objectives, cost of drilling is also an important objective which will determine whether the 

drilling operation can be carried out economically or not. According to Bourgoyne and Young (1974), the drilling cost 

is given by the following equation: 
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Penalty functions are usually added to or subtracted from the objective functions for minimization of the objective 

function and maximization of the objective function respectively. The use of penalty functions involving ‘h’ in all the 

objective functions is to stop the integration of the state variable equations to ensure that one can obtain the optimal 

solutions within the desired values of ‘h’. A popular transformation for an objective function, f, that has to be 

minimized, to one involving the tness function, F, that has to be maximized, is given by 
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This transformation does not alter the optimal solutions (Deb, 2001). 

3 Results and discussion 
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Bounds on the decision variables:
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3 Results and discussion 
3.1 Pore pressure parameter estimation 

For the evaluation of drilling models and optimization studies, it is required to estimate the unknown parameters in 

the pore pressure equation (Eq. (5)). Eq. (6) is solved using a single-objective binary coded simple GA. To predict pore 

pressure with TVD, the offshore Louisiana well has been considered in the present study. The Louisiana formation 

(Bourgoyne and Young, 1974) shows characteristic abnormal formation pressure. At about 11,940.0 ft depth the 
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3 Results and discussion

3.1 Pore pressure parameter estimation
For the evaluation of drilling models and optimization 

studies, it is required to estimate the unknown parameters in 
the pore pressure equation (Eq. (5)). Eq. (6) is solved using 
a single-objective binary coded simple GA. To predict pore 
pressure with TVD, the offshore Louisiana well has been 
considered in the present study. The Louisiana formation 
(Bourgoyne and Young, 1974) shows characteristic abnormal 
formation pressure. At about 11,940.0 ft depth the formation 
pressure increases abnormally. The details of the drill data 
along with pore pressure data are given by Bourgoyne and 
Young (1974). Here, the possible decision variables that 
influence pore pressure are: porosity decline constant (K), 
grain density (ppgg), fracture pressure gradient (ppgfr), 
Poisson’s ratio (µ) and surface porosity (ϕ0). Upper and lower 
limits of these decision variables are chosen according to 
Bourgoyne et al. (2003) and are given by: 8.0×10-5 ft-1  K 

 9.0×10-5 ft-1, 20.0 lb/gal  ppgg  30.0 lb/gal, 8.33 lb/gal 
 ppgfr  25.0 lb/gal, 0.18  µ  0.28 and 0.35  ϕ0  0.42. 

The value of the weighting factor, w0, is fixed at 107 for this 
problem. The best values of computational parameters used 
for solving this optimization problem are: the maximum 
number of generations = 100000, the size of population = 
100, the length of substring = 32, the length of chromosome 
= 32×5 = 160, the crossover probability = 0.95, the mutation 
probability = 0.01 and the random seed number = 0.6859. The 
central processing unit (CPU) time required for this problem 
is ~5.0 minutes on an Intel computer  (CPU T2050 @ 1.60 

GHz, 504 MB RAM). The computational parameters to be 
used in the code are tuned until the best results are obtained. 
Eq. (6) is solved separately using simple GA for thirty 
different values of pore pressure (Bourgoyne and Young, 
1974). Usually the values of K, ppgg and ϕ0 are independent of 
the formation depth and almost constant values are obtained 
for first five consecutive drilling depths from top. Hence, 
the average optimal values of K, ppgg and ϕ0 have been 
considered for other drilling depths for parameter estimation. 
The average optimum values for these decision variables 
are found to be: K = 8.4×10-5 ft-1, ppgg = 24.88 lb/gal and 
ϕ0 = 0.38. Optimum values of other two decision variables 
i.e., fracture pressure gradient (ppgfr) and Poisson’s ratio 
(µ) are given in Table 1 for all the drilling depths. Variation 
of normalized fracture pressure (ppgfr,n = ppgfr/ppgfr,ref) and 
Poisson’s ratio with normalized depth (Dn = D/Dref) are also 
shown in Figs. 1(a) and 1(b) respectively. A value of 18.2 lb/
gal is taken as a maximum fracture pressure (Table 1) and 
used as reference ppgfr. Similarly, the normalized TVD (Dn) 
is considered as D/20265 where the maximum drilling depth 
(i.e., 20,265 ft) is considered as the reference drilling depth 
(Dref). It is noticed that fracture pressure gradient varies in the 
same way as the pore pressure varies with TVD. The sharp or 
abnormal variation of ppgfr,n with Dn has been taken care of by 
introducing the error function in the proposed equation. The 
adjustable parameters were determined in accordance with 
the methodology adopted by Tiwary and Guria (2010). The 
variation of fracture pressure gradient with the depth is given 
by the following equation:
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Table 1 Optimal variation of Poisson’s ratio and fracture pressure gradient (for K=8.4×10-5 ft -1,  ppgg=24.9ppg 
and 0=0.38) 

Depth 
ft 

Optimum values Depth
ft 

Optimum values 
µ ppgfr µ ppgfr 

9515 0.25 12.9 12900 0.23 18.0 
9830 0.25 13.0 12975 0.22 18.0 
10130 0.24 12.8 13055 0.21 18.0 

Table 1 Optimal variation of Poisson’s ratio and fracture pressure gradient 

(for K=8.4×10-5 ft -1,  ppgg=24.9 lb/gal and ϕ0=0.38)

Depth
ft

Optimum values Depth
ft

Optimum values
µ ppgfr, lb/gal µ ppgfr, lb/gal

9515 0.25 12.9 12900 0.23 18.0

9830 0.25 13.0 12975 0.22 18.0

10130 0.24 12.8 13055 0.21 18.0

10250 0.25 12.9 13250 0.21 18.0

10390 0.24 12.8 13795 0.21 18.0

10500 0.23 12.7 14010 0.21 18.0

10575 0.23 12.8 14455 0.21 18.0

10840 0.23 12.8 14695 0.21 18.0

10960 0.23 12.9 14905 0.21 18.2

11060 0.23 12.9 15350 0.20 18.2

11475 0.23 12.9 15740 0.20 18.2

11775 0.24 13.6 16155 0.20 18.2

11940 0.24 15.4 16325 0.20 18.2

12070 0.22 15.6 17060 0.20 18.2

12315 0.23 16.8 20265 0.19 18.2
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The calculated normalized ppgfr (i.e., ppgfr,n in Eq. (14)) 
and the actual normalized ppgfr (Bourgoyne and Young, 1974) 
have been compared at different normalized drilling depths 
and results are found to be satisfactory (Fig. 1(a)). Similarly, 
the variation of Poisson’s ratio with Dn (Fig. 1(b)) is given 
by the following equation with a correlation coefficient more 
than 0.9:

(15)
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1974) have been compared at different normalized drilled depths and results are found to be satisfactory (Fig. 1(a)). 

Similarly, the variation of Poisson’s ratio with Dn (Fig. 1(b)) is given by the following equation with a correlation 

coefficient more than 0.9: 
2
n n0.180 0.37 0.39D D           (15) 

To check the accuracy of pore pressure prediction, Eqs. (14) and (15) along with other optimum pore pressure 

parameters (i.e., K, ppgg and 0), ROP at a different drilled depth has been calculated using Eq. (1) with model 

parameters for well No. 1 with a depth range of from 9,500 to 20,000 ft of the Gulf coast area of Louisiana (i.e., a1 = 

3.78, a2 = 0.17×10-3, a3 = 0.20×10-3, a4 = 0.43×10-4, a5 = 0.43, a6 = 0.21, a7 = 0.41 and a8 = 0.16). Details of the 

comparison between calculated and predicted ROP for the offshore Louisiana formation is shown in Fig. 2(a) whereas 

the percent error prediction for ROP with drilled depth is shown in Fig. 2(b). It is observed that most of the ROP 

predictions almost matched with the actual values (except at 10,500 and 14,000 ft depths with errors of 17 % and 15 % 

respectively) and the calculated average absolute deviation for all depths is found to be only 0.23 %.  
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To check the accuracy of pore pressure prediction, 
Eqs. (14) and (15) along with other optimum pore pressure 
parameters (i.e., K, ppgg and ϕ0), ROP at a different 

drilling depth has been calculated using Eq. (1) with model 
parameters for well No. 1 with a depth range of from 9,500 to 
20,000 ft of the Gulf coast area of Louisiana (i.e., a1 = 3.78, 
a2 = 0.17×10-3, a3 = 0.20×10-3, a4 = 0.43×10-4, a5 = 0.43, a6 

= 0.21, a7 = 0.41 and a8 = 0.16). Details of the comparison 
between calculated and predicted ROP for the offshore 
Louisiana formation is shown in Fig. 2(a), whereas the 
percent error prediction for ROP with drilling depth is shown 
in Fig. 2(b). It is observed that most of the ROP predictions 
almost matched with the actual values (except at 10,500 and 
14,000 ft depths with errors of 17 % and 15 % respectively) 
and the calculated average absolute deviation for all depths is 
found to be only 0.23 %. 
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Fig. 2 (a) Comparison of actual rate of penetration with true vertical depth, and (b) percent error of prediction for rate of penetration with true vertical depth 
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3.2 Evaluation of the drilling model 
In general, the state variable equation for drilling 

operation is written in the form of ordinary differential 
equations (ODEs) and is given by Eq. (16).

(16)

11 
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.
Eq. (16) is an initial value problem (IVP) and is integrated 

using the D02EJF subroutine (available in the NAG 
FORTRAN library) for any given u(t) and initial values of the 
state variables. This subroutine uses Gear’s method (Gupta, 
2010) to integrate a set of stiff ODEs. In this code, there is a 
provision for the adjustment of error tolerance. To calculate 
the error function in pore pressure equation (i.e., Eq. (14)), 
the S15AEF subroutine (available in the NAG FORTRAN 
library) is combined with the D02EJF subroutine. Drilling 
simulation is carried out for a given drill bit number with 
different combinations of N, W, ρc and Ref using Eq. (16). 

In this study, the rock bit with bit class (1-3 to 1-4) has been 
considered and τH (life of tooth at standard conditions) has 
been calculated using Eq. (3) for (i) h = 1 (i.e., complete 
wearing of the drill bit), (ii) drilling time (tb) and (iii) drill bit 
tooth wear parameters [i.e., H1, H2, H3 and (W/d)max] for the 
offshore Louisiana formation (Bourgoyne and Young, 1974). 
Details of drilling time, drill bit tooth wear parameters and 
operating parameters (i.e., N, W, ρc and Ref) used for drilling 
simulation are given in Table 2. Bit numbers 9, 18 and 21 
(Table 2) are chosen for drilling simulation and results for 
drilling depth and drill bit fractional tooth wear with drilling 
time are shown in Figs. 3(a) and 3(b) respectively. This 
simulation procedure is quite general, and can be made for 
other drill bits. The simulation results (i.e., predicted drilling 
depth and fractional wear with drilling time) for drill bit No. 9, 
18 and 21 are quite satisfactory and very much closer to the 
actual ROP (Bourgoyne and Young, 1974). Therefore, Eqs. (1), 
(2) and (5) can be used for finding the optimal values of the 
drilling variables through multi-objective optimization.  

3.3 Multi-objective drilling optimization 
The elitist non-dominated sorting genetic algorithm, 

Table 2 Details of drilling parameters for simulation (Bourgoyne and Young, 1974)

Drill bit
No.*

Initial conditions Operating parameters
Drilling time 

tb, h
Drill bit teeth 

life τH, h**Time t
Normalized drilling depth

Dn (D/20265), ft/ft
Rotary speed 

N, rpm
WOB

W, 1000 lb/in
ECD

 ρc, lb/gal
Reynolds number 

function Ref

7 0 0.47 113 305.80 9.50 0.96 413.70 305.80

8 0 0.49 126 10.23 9.50 0.96 14.32 10.23

9 0 0.50 129 15.23 9.60 0.83 21.43 15.23

11 0 0.51 87 4.21 9.70 0.98 12.00 4.22

12 0 0.51 78 2.53 9.70 0.98 8.75 2.54

13 0 0.53 67 3.83 9.80 0.93 27.11 6.52

15 0 0.57 77 9.29 10.30 0.89 45.36 14.22

18 0 0.58 58 4.58 11.80 0.85 22.22 4.59

21 0 0.59 67 7.10 10.30 0.98 26.61 7.10

22 0 0.60 84 5.30 15.70 0.99 13.54 5.30

23 0 0.64 85 8.53 16.70 1.15 26.43 12.11

24 0 0.65 77 0.76 16.70 1.22 1.76 0.77

25 0 0.68 81 14.79 16.80 0.27 65.60 22.26

26 0 0.69 75 2.75 16.80 0.20 10.19 2.76

28 0 0.71 64 5.28 16.90 0.75 23.42 5.28

29 0 0.74 75 3.46 17.20 0.42 22.28 7.43

30 0 0.76 85 6.62 17.00 1.29 16.42 6.63

32 0 0.80 80 12.64 17.90 0.67 63.89 24.52

34 0 0.84 65 18.19 17.60 0.75 65.58 22.40

Notes: * For a given drill bit number, the tooth wear parameters i.e., H1 = 1.84, H2 = 6, H3 = 0.80, and (w/d)max = 8.0 are 
considered for calculation with bit class 1-3 to 1-4.
** Drill bit teeth life is calculated using Eq. (3).
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NSGA-II, is used to solve multi-objective function 
optimization problems (i.e., Problems 2 and 3) involving 
time variant decision variables, namely, N(t), W(t), ρc(t) 
and Ref (t). The working principle of NSGA-II is based on 
the following tasks: (i) coding of the design or decision 
variables, (ii) evaluation of the objective functions and (iii) 
improvement of objective functions using genetic operators, 
namely, tournament selection, single point crossover, bit 
wise mutation and parent-daughter elitism. Details of NSGA-
II have been described by Deb and co-workers (Deb, 2001; 
Deb et al, 2002). An initial population of a given size is 
created using a random number generation subroutine. Using 
genetic operators (i.e., selection, cross over and mutation), 
the values of the objective functions will continue to improve 
by selecting better population of the decision variables. The 
subroutine D02EJF is combined with the adaptive version of 
NSGA-II optimization code for multi-objective optimization 
to solve initial value problem with multiple stiff differential 
equations. To account for continuous variation of the decision 
variables with drilling time for a single bit run, ten equally 
spaced points for each decision variable were generated 
randomly using a random number generator within its upper 
and lower limits for any drilling time interval. These equi-
spaced decision variables are then fitted into a polynomial 
using the E02ACF subroutine (available in the NAG Library) 
to obtain time variant decision variables. Now interpolated 
polynomials [i.e., N(t), W(t), ρc(t), Ref(t)]  are incorporated in 
the D02EJF subroutine for solving Eq. (16). To evaluate the 
values of error function in the pore pressure equation (Eq. 
(14)), the S15AEF subroutine (available in NAG Library) is 
also included with the D02EJF subroutine. Therefore, NSGA-
II code combined with three NAG subroutines (i.e., D02EJF: 
for solving IVP with multiple stiff ODEs; S15AEF: for 
evaluation of error function and E02ACF: for generation of 
time variant continuous decision variables) are used to solve 
the multi-objective optimization problems. The adaptive 
version of NSGA-II code is free of errors and tested using 
standards checks (Nayak and Gupta, 2004; Kachhap and 
Guria, 2005; Guria et al, 2005a; 2005b; Iqbal and Guria, 
2009).

Eqs. (9) and (11) describe the multi-objective drilling 
optimization problems for the offshore Louisiana formation. 
First, Eq. (9) is solved that includes two-objective functions 

with four time variant continuous drilling variables, i.e., 
N(t), W(t), ρc(t), Ref(t). In this problem, the normalized final 
drilling time (tf/tref) is minimized along with the maximization 
of final non-dimensional drilling depth (Df/Dref) for given 
limiting fraction of drill bit tooth wear. It is assumed that rig 
time (the sum total of rotating time, trip time during bit run 
and connection time) is also minimized when actual drilling 
time (i.e., drill bit rotating time) is minimized. The value of 
tref and Dref are taken as 25.00 h and 20,265 ft respectively. 
The studies are carried out for multi-objective optimization 
using drill bit No. 28 at a depth of 14,455 ft (Table 2) to 
find the optimal values of the drilling variables for a single 
bit run. Details of the two-objective functions optimization 
problem are given in Column 2 of Table 3. Here bounds of 
the decision variables are based on exploratory drilling data 
of the Louisiana formation (Bourgoyne and Young, 1974). 
For example, ECD is chosen within the drilling mud window 
i.e., pore pressure gradient and fracture pressure gradient 
of the formation. At 14,455 ft depth, the predicted fracture 
pressure gradient (Eq. (14)) and the pore pressure gradient (Eq. 
(5)) are calculated as 18.2 lb/gal and 16.4 lb/gal respectively. 
Therefore, bounds of the ECD (ρc) are chosen as 16.4-18.2 
lb/gal. Similarly, bounds of the other decision variables are 
chosen from Table 2. Eq. (9) is solved using NSGA-II and 
Fig. 4 shows the feasible optimal Pareto frontier for Problem 
2 at the 100th generation. These solutions are clearly non-
dominated (non-commensurate) to each other. It is also found 
that the results at the 90th generation do not differ much 
from those at the 100th generation and one can reduce the 
computation time easily. The best values of the computational 
parameters used for this problem are given in Column 2 of 
Table 4. The weighting factors (w1 and w2) for this problem 
are fixed at 107. A gap is observed in the optimal Pareto plots. 
Similar gaps have also been noticed by many researchers in 
computing intense multi-objective optimization problems 
(Kasat et al, 2002; Nayak and Gupta, 2004; Kachhap and 
Guria, 2005; Rangaiah, 2009, Guria, et al, 2009). In order 
to reduce this gap in Fig. 4, optimization was carried out for 
200, 500 and 1,000 generations and there was no significant 
effect on the optimal Pareto solution with the increase in 
generation number. This is possibly due to the attainment of 
very close optimal values of all decision variables at the two 
extreme points in the gap, i.e., points ‘B’ and ‘C’ or ‘D’ and 

Fig. 3 Variation of (a) drilling depth and (b) fractional rate of drill bit wear with drilling time with different bits for a single bit run
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‘E’ in Fig. 4 (Nayak and Gupta, 2004; Kachhap and Guria, 
2005). Based on engineering judgment, a decision maker can 
select any preferred solution from the optimal Pareto frontier 
(Fig. 4). Here, we choose five different optimal solutions 
from Fig. 4 and marked as A, B, C, D and E with increasing 
drilling time for a single bit run. On minimizing only f1, the 
shortest achievable time for drilling will obtain and this is 
shown by point A in Fig. 4. Similarly, maximizing only f2, the 
final normalized drilling depth (Dn) is obtained which is the 

highest achievable drilling depth during drilling (i.e., point E 
in Fig. 4). Here, the points A and E are two limiting optimal 
solutions for the two-objective optimization problem. We also 
select points B, C and D (Fig. 4) randomly in between A and 
E on the optimal Pareto frontier and the decision maker may 
select any point on the basis of trade-off. The optimum values 
of the decision variables corresponding to these five different 
points (i.e., A, B, C, D and E in Fig. 4) are in shown in Figs. 
5(a)-5(d). 

Table 3 Details of the multi-objective optimization problems

Description Problem 2 Problem 3

Objective functions:*

      First Final drilling depth (Df/Dref) Final drilling depth (Df/Dref)

      Second Final drilling time (tf/tref) Final drilling time (tf/tref)

      Third － Drilling cost (Cf/Cref)

Constraint:

      h, % 0.75 0.75

Bounds of the decision variables:

      N, rpm 50-100 50-100

      W, 1000 lb/in 1.00-2.00 1.00-2.00

      ρc, lb/gal 16.45-18.20 16.45-18.20

      Ref 0.5-1.0 0.5-1.0

Model parameters:

      Formation

            Fracture pressure gradient ppgfr, lb/gal Eq. (13) (Fig. 1(a)) Eq. (13) (Fig. 1(a))

            Poisson’s ratio μ Eq. (14) (Fig. 1(b)) Eq. (14) (Fig. 1(b))

            Grain  density ppgg, lb/gal 24.88 24.88

            Porosity decline constant K, lb/gal 8.4×10-5 8.4×10-5

            Surface formation porosity ϕ0 0.3795 0.3795

      Model constants for a depth range of 9500-20000 ft (Bourgoyne and Young, 1974)

            a1,  a2, a3,  a4,  a5, a6,  a7, a8 
3.78, 0.17×10-3, 0.20×10-3, 0.43×10-4, 

0.43, 0.21, 0.41 and  0.16
3.78, 0.17×10-3, 0.20× 10-3, 0.43×10-4, 

0.43, 0.21, 0.41 and  0.16
      Initial conditions for ODEs (Eqs. (1) and (2))

            Drilling time t, h 0.0 0.0

            Drilling depth D, ft 0.0 0.0

            Fractional wear of drill bit, h 0.0 0.0

      Drill bit parameters

            Bit number 28 28

            Bit class 1-3 to 1-4 1-3 to 1-4

            (w/d)max, 1000 lb/in 8.00 8.00

            (w/d)t, 1000 lb/in 0.50 0.50

            First constants for bit H1 Table 2 Table 2

            Second constants for bit H2 Table 2 Table 2

            Third constants for bit H3 Table 2 Table 2

            Life of bit teeth at standard condition τH, h 5.28 5.28

      Rig parameters (Bourgoyne and Young, 1974)

            Bit cost Cb, $ － 400

            Rig cost Cr, $/h － 500

            Connection time tc, h － 1.00

            Trip time tt, h － 6.00

Notes: * Dref = 20265 ft, tref = 25.0 h and Cref = 20.0 $/ft
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It is observed for the shortest final drilling time (i.e., 
point A in Fig. 4) that the optimum values of the decision 
variables (Figs. 5(a) -5(d): line A) remain almost at their 
highest limit. Similarly for the longest final drilling time 
(i.e., point E in Fig. 4), the optimum values of the decision 
variables particularly N(t) and W(t) remain almost at their 
lowest limit (Figs. 5(a) and 5(c): line E) whereas ρc(t) 
starts from the lowest possible value at the beginning of 
drilling and increases gradually with time after attaining an 
intermediate value at the end (Fig. 5(b): line E). Ref(t) also 
starts increasing from the lowest possible limit and attains 
the maximum possible limit at the end (Fig. 5(d): line E). 
For the intermediate values of final drilling time (i.e., Point 
B, C and D in the optimal Pareto front: Fig. 4), the optimum 
values of the decision variables are also varying with time 
(Fig 5(a)-5(d)). For these three points, it is interesting to note 
that the optimal values of ρc(t), W(t) and Ref(t) start from the 
intermediate values at the beginning of drilling and gradually 
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increase with drilling time. Finally, they also attain a steady 
value at the end which is shown in Figs 5(b)-5(d) (lines: B, C 
and D). It is also noticed that the optimum values of W(t) and 
Ref(t) are very close to the upper limit of the corresponding 
decision variables at the end of drilling (Figs. 5(c) and 5(d)), 
whereas ρc(t) remains at the higher intermediate value at the 
end (Fig. 5(b)) which is an indication of wellbore stability 
while drilling. The scenario is different for the optimal 
values of N(t) while the optimal drilling. For the reduced 
final drilling time (Fig. 4: point B), the optimum values of 
N(t) takes an intermediate optimum value at the beginning 
of drilling and gradually increases with time, attaining a 
steady value at the end which is also quite close to the upper 
limit of the decision variables (Fig. 5(a): line B). With an 
increase in final drilling time (Fig. 4: points C and D), the 
optimum values of N(t) start from the intermediate points and 
continue to decrease with time, attaining a steady value at 
the end which is very much closer to the lowest limit of the 
decision variables (Fig. 5(a): lines C and D). It is noted that 
the highest possible value of ρc(t) will be preferred for faster 
drilling to reduce the drilling time (Fig. 4 and Fig. 5(e): point 
E) whereas the intermediate values ρc(t) will be preferred 
for the moderate rate of drilling (Fig. 4 and Fig. 5(b): except 
point E). Therefore, the mutual adjustment of all the decision 
variables will help to improve ROP and will maintain well 
bore stability which are very much applicable to the real-life 
drilling operations.

Now, a three-objective functions optimization problem 
is solved involving time variant continuous drilling 
variables, i.e., N(t), W(t), ρc(t) and Ref(t) for given limiting 
fractional tooth wear of the drill bit. This problem deals with 
minimization of the normalized drilling cost (Cf/Cref), the 
maximization of final normalized drill depth (Dn) and the 
minimization of final normalized drilling time (tf/tref). The 
values of Cref is taken as 20.0 $/ft in the present study. Details 
of this three-objective optimization problem are given in 
Column 3 of Table 3 and the best values of the computational 
parameters are given in Column 3 of Table 4. The weighting 
factors (w1, w2 and w3) for this problem are also fixed at 
107 for this problem. It is also mentioned that though the 
actual cost components of drilling operation may differ from 
the chosen values (Column 3 of Table 3), the optimization 
procedure is quite general and applicable for any values of 
cost data. Eq. (12) is solved using NSGA-II and Fig. 6 shows 
the feasible optimal Pareto surface for Problem 3 at the 100th 
generation. It is mentioned that all the points on the optimal 
Pareto surface are non-dominated (non-commensurate) to 
each other, and the decision maker can choose any point from 
this surface depending upon the trade-off involved during 
drilling. It is also found that the results at the 90th generation 
do not differ much from those at the 100th generation and 
one can reduce the computation time easily. Similar to 
Problem 2, any three points are selected randomly from the 
Pareto optimal surface with increasing order of drilling cost 
and marked as A, B and C (Fig. 6). The details of A, B and 
C points are also shown in Fig. 6. Variation of the optimal 
values of the decision variables [i.e., N(t), W(t), ρc(t) and 
Ref(t) are shown in Figs. 7(a)-7(d). The optimum values 
N(t) starts with a higher value and gradually decreases with 

drilling time, attaining a steady values at the end, which is the 
lower limit of the decision variables (Fig. 7(a)). The initial 
high value of N(t) will help to increase ROP and higher values 
of N(t) is the preferred option to reduce the drilling cost. It 
is also observed that the optimum values of ρc(t) gradually 
increase with final drilling time and attain steady values 
at the end with a higher intermediate value. The optimal 
values of Ref(t) also increases with drilling time and attains 
a steady value at the end which is almost at the upper limit 
of the decision variable. The scenario is different for W(t) as 
compared to N(t), ρc(t) and Ref(t). In order to reduce the cost 
of drilling operation (points B and C in Fig. 6), the optimum 
values of the decision variable takes always higher values at 
the beginning and attains a steady value at the end which is 
at the upper limit of the decision variables (Fig. 7(c): lines B 
and C). For higher drilling cost (13.68 $/ft: Fig 6, point A), 
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Fig. 6 Pareto optimal solution for three-objective optimization 
problem (Problem 3, Eq. (12))
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Table 4 Computational parameters used for multi-objective
optimization problems 

Description Problem 2 Problem 3

Number of objective functions 2 3

Number of decision variables 4 4

Number of constraints 1 1
Number of interpolating data points for 

a decision variable 10 10

Length of substring lsubstr 32 32

Length of chromosome lchrom 32×40 = 1280 32×40 = 1280

Maximum number of generations Ngmax 100 100
Number of chromosomes in the

 population Np
100 100

Crossover probability pc 0.90 0.90

Mutation probability pm 0.01 0.10

Random seed number 0.5789 0.5786

Computational time, min 9.50 9.85
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the optimum values of W(t) starts with a intermediate value at 
the beginning and attains a lowest possible steady value at the 
end (Fig. 7(c), line A). The initial higher values of the W(t) 
is mainly to improve rate of penetration by reducing drilling 
time. It is mentioned that almost similar variation of these 
decision variables are also commonly noticed in real life 
drilling operation. The above multi-objective optimization 
procedure is quite general and can be applied easily for 
efficient drilling operation of developmental oil wells.

4 Conclusions
Multi-objective drilling operation of the Louisiana 

offshore field is carried out using binary coded elitist non-
dominated sorting genetic algorithm. Bourgoyne and Young’s 
model is used to predict drilling depth and fractional drill 
bit tooth wear with drilling time. For the model based 
optimization, the variation of pore pressure gradient with true 
vertical depth is estimated by minimizing the weighted square 
of the errors between actual and predicted pore pressure. 
Several two- and three-objective optimization problems 
involving operating and economic criteria have been 

Fig. 7 Optimal variation of the decision variables i.e., (a) N(t), (b) ρc(t),  (c) W(t) and (d) Ref(t) with drilling time for Problem 3
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formulated and solved. The important objectives functions 
are: (i) maximization of the drilling depth, (ii) minimization 
of the drilling time, and (iii) minimization of the cost of 
drilling. The time variant decision variables present in 
the multi-objective optimization problems are: equivalent 
circulation density, rotary speed of the drill bit, weight on drill 
bit and Reynolds number function based on the circulating 
fluid through the drill bit nozzles. A set of equally good 
non-dominated optimal Pareto optimal frontier is obtained 
for the two-objective optimization problem. Similarly, a 
set of equally good non-dominated optimal Pareto surfaces 
is obtained for the three-objective optimization problem. 
Depending on the trade-offs involved among the objectives, 
the decision maker may select any point from the optimal 
Pareto frontier or optimal Pareto surface and corresponding 
time variant decision variables for the optimal operation of 
developmental oil well drilling. The optimum values of time 
variant decision variables are needed to be kept at the higher 
values to minimize drilling time and the drilling cost whereas 
drilling depth will be maximized by keeping the optimum 
values decision variables at the lower values.  
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Nomenclatures
a1         Formation strength parameter
a2        Exponent of the normal compaction trend
a3        Under compaction exponent
a4        Pressure differential exponent
a5         Bit weight exponent 
a6        Rotary speed exponent
a7        Tooth wear exponent
a8        Hydraulic exponent
b        Bearing exponent in Eq. (4) 
B        Fractional bearing wear
Cb        Cost of bit, $
Cf        Drilling cost per foot, $/ft
Cr        Fixed operating cost of the rig per unit time, $/h
d        Drill bit diameter, in
dn        Bit nozzle diameter, in
D        Drilling depth, ft
E        Error in Eq. (6a)
f1-3        Objective functions
F         Fitness function, Eq. (13)
h        Fractional tooth height worn away
H1, H2, H3     Constants in Eqs. (2) and (3)  
K        Porosity decline constant, ft-1

lchrom         Length of chromosome
lsubstr         Length of substring
N        Rotary speed of drill bit, rpm
NP        Number of chromosomes in the populatio
Ng        Generation number  
Ngmax              Maximum number of generations
ppgfr              Fracture pressure gradient, lb/gal
ppgg              Grain density, lb/gal
ppgp        Pore pressure of the formation, lb/gal
pc         Crossover probability
pm         Mutation probability
Ref        Reynolds number function based on nozzle 
                      diameter of drill bit
t        Time, h
tt        Trip time during a bit run, h
tc        Connection time or non-rotating time, h
tb        Rotating time during a bit run, h
u        Decision variable vectors, Eq. (16)

23 
 

d drill bit diameter, in 

dn  bit nozzle diameter, in 

D drilled depth, ft 

E Error in Eq. (6a) 

f1-3 objective functions 

F   fitness function, Eq. 13 

gp Pore pressure gradient of the formation, lb/gal  

h  fractional tooth height worn away 

H1, H2, H3  constants in Eqs. (2) and (3)    

K    porosity decline constant, ft-1 

lchrom     length of chromosome 

lsubstr     length of substring 

N    rotary speed of drill bit, rpm 

NP    number of chromosomes in the population    

Ng    generation number   

Ngmax        maximum number of generations 

ppg    density, lb/gal 

ppgg         grain density 

ppgfr        fracture pressure gradient 

pc     crossover probability 

pm     mutation probability 

Ref    Reynolds number function based on nozzle diameter of drill bit 

t     time, h 

tt    trip time during bit run, h 

tc    connection time or non-rotating time, h 

tb    rotating time during bit run, h 

u     decision variable vectors, Eq. (16) 

 tW
d
w
   weight on bit per inch of bit diameter, 1000 1b/in 

w0-3      weighting factors 

x      state variable vectors, Eq. 16 

Greek letters 

μ Poisson’s ratio of formation 

ν the apparent viscosity at 10,000 sec-1, cP 

 average porosity 

0 surface porosity  

     Weight on bit per inch of bit diameter, 1000 1b/in

w0-3        Weighting factors
x        State variable vectors, Eq. (16)
Greek letters
μ        Poisson’s ratio of formation
ν        Apparent viscosity at 10,000 s-1, cP
ϕ        Average porosity
ϕ0        Surface porosity 
ρc        Density of the circulating drilling fluid, lb/gal
τb        Formation abrasiveness constant or life of 
                     bearing at standard conditions, h
τH        Formation abrasiveness constant or life of tooth     
                     at standard conditions, h
Subscripts/Superscripts
cal        Calculated
d        Desired

f        Fracture
g        Grain
L        Lower bound of the decision variables
max        Maximum
min        Minimum 
n        Normalized 
p        Pore
ref        Reference
t        Threshold
U        Upper bounds of the decision variables 
0        Onitial condition/surface 
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