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Abstract: Although the phase-shift seismic processing method has characteristics of high accuracy, good 

by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the 
approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure 
and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves 
that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus 
a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method 
proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and 
strong lateral velocity variation. 
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(1978). This method has high accuracy, good stability, 
high efficiency, high-dip imaging and good adaptability to 
vertical velocity variation, but it is not able to adapt to strong 
lateral velocity variation. To overcome the defect of PS, 
Gazdag proposed the phase-shift wave equation migration 
plus interpolation method in 1984 (Gazdag and Sguazzero, 
1984). Although the method improves PS to some extent, the 
computing workload increases dramatically.

On the basis of Gazdag’s method, a phase-shift plus 
finite-difference migration method (PSFD) was proposed 
(Gazdag and Sguazzero, 1984), which retains PS’s computing 
efficiency, zero frequency dispersion and good stability. In 
this method, a finite-difference method is adopted together 
with the phase-shift method. This adapts well to strong lateral 
velocity variation and avoids the defects of the pure phase-
shift method. Besides PSFD, the other method (FFD) is 

on the basis of SSF, to enhance its ability to deal with strong 
lateral velocity variation and high-dip angle. This method 
integrates the strengths of both FD and PS. Therefore, it can 
tackle the problem of high-dip angle and strong velocity 
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1 Introduction
Currently, seismic exploration focuses on areas of 

complex structure and dramatic velocity variation. However, 
the conventional migration processing adopted in these areas 
cannot obtain precise imaging of the underground structure. 
Therefore, prestack depth migration is used instead, because 
it adapts well to the areas of complex structure and dramatic 
velocity variation and is one of the effective ways to image 

The core of prestack depth migration is the wave field 
propagation operator. The conventional methods to compute 
the wave field propagation operator are: the Kirchhoff 
integration based on a ray theory method (Keho and 
Beydoun, 1988), phase shift method (PS) (Gazdag, 1978), 

method (SSF) (Stoffa et al, 1990), Fourier finite difference 
method (FFD) (Ristow and Rühl, 1994) and the generalized 



191

2008). On the basis of phase-shift plus finite-difference, 
this paper proposes a method to optimize the coefficient of 
the single square root of the dispersion equation, increase 
approximation accuracy and, in the end, increase the imaging 
effect.

The 2-D wave equation is written as:

 (1)
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where v x and z are 
u(x, z t t is time, 

s.   
Convert the above equation into a frequency-space 

domain equation by FFT: 
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where u(x,z ) is the wave field of the frequency-space 
domain,  is angle frequency (rad/s), and v is medium 
velocity.

The 2-D one-way equation in the frequency-space domain 
is written as:

(3)
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where i  is imaginary, 1i .
Converting Eq. (3) to a frequency-wave number domain 

equation by FFT:
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From Eq. (4), we derive the dispersion equation of a 
single square root operator:
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In Eqs. (4) and (5), kx is the wave number of horizontal x
kz is the wave number of vertical z.

When the background velocity is v0(z), if v0(z) replaces 
medium velocity v(x, z) in the single square root operator of 
the dispersion equation, the error is:
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If 
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vx k  , and (0,1)x , then the square root in Eq. (6) is 

written as:
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Substituting Eq. (8) into Eq. (6), the following equation is 

derived:
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Convert Eq. (9) to frequency-space domain:
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Thus, kz  in Eq. (11) is written as:
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where the first factor is the constant velocity phase-shift 

factor is the adjusted time-shift operator in the frequency-
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A higher precision will be obtained if a higher-order 
approximation is adopted in Eq. (8) at the cost of greatly 
increased computation. Usually the optimized coefficient 
can both increase the accuracy of the algorithm and maintain 

improved the high-dip imaging of FFD by optimizing the FFD 

the formal power series expansion of the approximating 
function, which although reveals as much information about 
the approximating function as possible, its vertex position 

Fehler (2000) proposed a globalized scheme of adopting 

velocity variations. Fu et al (2007) proposed a degenerate 
Fourier migration operator by approximating the degenerate 
kernel of the Lippmann-Schwinger one-way wave integral 
equation. But this method employs a Taylor expansion and 
a rational approximation splitting algorithm, both of whose 

higher precision globalized coefficients by simulated 
annealing, which has to be completed within limited time and 
has to adjust parameters for different situations. Therefore, 
an improved simulated annealing, i.e. genetic and simulated 

applied the globalized optimization in a 3-D splitting error 
amendment.

3 The computation and performance 

To compute the third and fourth factors in Eq. (12), 
a genetic and simulated annealing hybrid algorithm was 

algorithm can be iterated and adjusted, within certain 
possibilities, to the degrading of the target function. Local 
optimum points in the optimization process can thus be 
avoided and globalized optimum analytic solutions can be 
guaranteed. However, this method is very slow to converge. 
Though the genetic algorithm is able to obtain the globalized 
optimum solutions with higher probability and has a feature 
of implicit parallel arithmetic, it has the defect of immature 
convergence. To avoid the above-mentioned defects, the 
hybrid genetic and simulated annealing algorithm is adopted 
in this paper. This algorithm has advantages over pure 
genetic or simulated annealing algorithm in the following 

of robustness.
If the incidence angle is  and sin( ) xvk

, Eq. (8) is 
written as:
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The coefficient of Eq. (14) is computed by the hybrid 
genetic and simulated annealing algorithm. The initial 
parameters are given as: initial temperature c0=200 ºC 

max a=0.8752, b=0.3896. 
Eq. (12) is written as:
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(15)
The relative error between the approximant with 

(16)
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Comparing our error with the previous relative error 
between the approximant with coefficients of a=0.8528, 
b=0.3767 and the precise dispersion equation, we obtain 
error curves as illustrated in Fig. 1. Fig. 1 shows that the 

previous coefficients. Therefore, the approximant achieves 
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Fig. 1 Curve charts of the relative errors between approximations 

To better compare the approximation effects between 
the optimized coefficients a=0.8752, b=0.3896 and the 

a=0.8528, b=0.3767, we calculate their 
respective mathematic expectations of the relative errors 
between them and the precise values. 

(17)0
( )

n

r
k

E
E

n

Pet.Sci.(2013)10:190-194



193

The mathematic expectation of the relative error between 
the optimized coefficients a=0.8752, b=0.3896 and the 
precise value is E=0.062681, and the mathematic expectation 
between the existing coefficients a=0.8528, b=0.3767 and 
the precise value is E=0.085439. On the basis of the above 
comparison, we arrive at the conclusion that the optimized 
coefficients proposed in this paper can achieve much better 
approximation precision and smaller relative errors. 

4 Simulated imaging by an optimized 

To test the performance of the method proposed in this 

operator on the basis of hybrid genetic and simulated 
annealing algorithm, we conducted prestack depth migration 
imaging for a 2-D SEG/EAGE salt dome model with the 
optimized operator. 

2-D SEG/EAGE salt dome models have complex geologic 
features, complicated structures and dramatic lateral velocity 
variation. In particular, the high-velocity salt dome in the 

of the model are: 1,290 (lateral sampling), 300 (vertical 
sampling), 12 m (lateral sampling interval), and 12 m (vertical 
sampling interval). The model is illustrated in Fig. 2.

proposed in this paper adapts better to areas with strong 
lateral velocity variation.

5 Conclusions
Compared with conventional coefficients, the optimized 

coefficients achieve better imaging. The key is that the 
approximation by the hybrid algorithm can better approximate 
the precise single square root dispersion equation. 
Consequently, the descriptive accuracy of strong lateral 
velocity variation medium is improved. In conclusion, phase-
shift plus finite-difference migration operator of optimized 
coefficients based on a hybrid genetic and simulated 
annealing algorithm can attain better imaging in areas of 
high-dip angle and strong lateral velocity variation.
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Fig. 2 Velocity model of a 2-D SEG/EAGE salt dome

For a 2-D SEG/EAGE salt dome, two prestack depth 
migrations are conducted with phase-shift plus finite-
difference migration operator of conventional coefficients 
and phase-shift plus finite-difference migration operator of 

demonstrated in Figs. 3 and 4 respectively. 

conclusion that the imaging effect in Fig. 4 is better than that 
in Fig. 3, with a clearer salt dome structure, more clear-cut 
structure boundaries, and a much more distinct wave field 
below the salt dome. Therefore, a phase-shift plus finite-
difference migration operator based on hybrid genetic and 
simulated annealing algorithm achieves better imaging 
than a phase-shift plus finite-difference migration operator 
of conventional coefficients. Therefore, the new method 

Fig. 3 
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Fig. 4 Prestack depth migration profile of the 2-D SEG/EAGE salt 

of hybrid genetic and simulated annealing algorithm 
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