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Abstract: Assuming that oil price follows the stochastic processes of Geometric Brownian Motion (GBM) 
or the Mean-Reverting Process (MRP), this paper takes the net present value (NPV) as an economic 
index and models the PSC in 11 different scenarios by changing the value of each contract element (i.e. 
royalty, cost oil, profit oil as well as income tax). Then the NPVs are shown in probability density graphs 
to investigate the effect of different elements on contract economics. The results show that under oil price 
uncertainty the influence of profit oil and income tax on NPV are more significant than those of royalty 
and cost oil, while a tax holiday could improve the contractor’s financial status remarkably. Results also 
show that MRP is more appropriate for cases with low future oil price volatility, and GBM is best for high 
future oil price volatility.
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1 Instruction
Oil contracts are always regarded as “the Bible” in 

international cooperation for being the foundation of oil 
companies’ operation in overseas oil & gas exploration and 
development. A common type, production sharing contracts 
(PSCs) have features that the oil resources are owned by 
the host government (often represented by national oil 
companies, NOCs), while foreign oil companies (FOCs) 
undertake all risks as well as the cost in the entire exploration 
process, then production is split at an agreed rate between the 
NOC and FOC. Also, FOCs have to pay income tax on their 
share of profit oil (Johnston, 2003; Ge et al, 2004).

Many Chinese and overseas scholars have put great 
efforts into the study of PSC. Johnston (1994) presented 
and investigated the contract elements of PSC in detail in 
International Petroleum Fiscal Systems and Production 
Sharing Contracts. Wu and Wang (2006) studied the risks 
in PSC. Mudford and Stegemeier (2003) examined the 
sensitivity of production sharing contract terms under both 
technical and price uncertainties; also, they compared 
different PSCs in three countries, Egypt, Angola and 
Equatorial Guinea. Bindemann (1999) investigated the 
economics of PSC at a fixed oil price and the impacts of 
contract elements on PSC economic indices, NPV and IRR. 
Wang et al (2010b) modeled the impact of contract elements 
on PSC economics by assuming oil price follows Geometric 

Brownian Motion. Hao and Kaiser (2010) constructed a meta 
model for modeling China’s offshore production sharing 
contracts by using a probabilistic approach.

The oil industry’s features of large investment, long period 
and high risk, as well as the particularities of international 
petroleum cooperation modes, oil price and major contract 
elements both play a central role for evaluating projects (Luo 
and Yan, 2010). The future oil price is full of uncertainties, 
and due to oil’s more and more significant financial attributes, 
the fluctuation track of oil price is more like a stochastic 
process (Chen et al, 2008; Lin and Liu, 2008). This paper is 
to construct an economic analysis framework considering 
future fluctuations of oil price. Taking the Geometric 
Brownian Motion and Mean-Reverting Process separately 
as oil price stochastic processes, the paper investigates 
contract economics based on the probability density graphs 
of NPVs from simulations. They both better describe future 
uncertainties and help making results more reasonable and 
more persuasive. In addition, the impacts of different contract 
elements on PSC economics are studied. We hope the findings 
of this paper will contribute a new reference for bidding, 
negotiating and decision making to the business world 

2 PSC contract elements
In general, there are two key participators in a PSC, a 

foreign oil company (FOC) and a government representative 
which is often a national oil company (NOC). Once oil is 
produced, the FOC has to pay some royalty. After FOC 
recovers its costs at a pre-specified percentage of production, 
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the so-called cost oil, the remainder of production (profit 
oil) is then split between NOC and FOC at an agreed rate. 
Meanwhile, an income tax can commonly be imposed on 
FOC for its operations on the territory and has to be paid 
from its share of profit oil. Therefore, main contract elements 
of PSCs include royalty, cost oil, profit oil and income tax 
(Bindemann, 1999).

2.1 Royalty
Royalty is one of the most basic elements for a contract 

of international oil cooperation. Once the production starts, 
FOCs have to pay royalty (by oil or cash) to host country 
government. In reality, royalty is not always set as a fixed 
share of oil production, and can be adjusted according to 
average daily output. Generally it varies from 6% of total 
production to 15%, as too high a proportion could exert 
negative effect on FOCs and impede production cooperation.

2.2 Cost recovery
Before the initiation of production sharing, PSC allows 

contractors (FOCs) to recover their costs on exploration, 
development of oil fields and operation at a pre-specified 
percentage of production, the so-called cost oil. Most PSCs 
have a cost-oil limit of say 60 percent of production, while 
allowing unrecovered costs to be carried forward and 
recovered in the next period.

2.3 Profit oil
After subtraction of royalty and cost oil, the remainder of 

the production, the so-called profit oil, is then split between 
FOC and NOC at an agreed rate, like 40/60.

2.4 Income tax
When FOCs get their share of profit oil, they have to 

pay income tax at an agreed rate stipulated in contracts or 
local laws. Sometimes, the host government would set a tax 
holiday of several years, so as to encourage FOCs to carry out 
exploration and development on its territory.

3 Simulation framework for PSC
3.1 Selection of oil price stochastic process

In the international petroleum market, besides the basic 
factors of supply and demand, there are many other factors 
such as geopolitical perceptions and speculation activities 
that act upon oil prices. These factors are complicated and 
intertwined, and difficult to quantify, making the track 
of oil price movement more like a stochastic process and 
unpredictable. In this study, Geometric Brownian Motion 
(GBM) and Mean-Reverting Process (MRP) are selected to 
describe the movement of oil prices for economics analysis 
(Wang et al, 2010a, 2010b; Schwartz, 1997; Wang and Li, 
2010).
3.1.1 Geometric Brownian motion

If the price of an underlying asset follows a Geometric 
Brownian Motion, it will show that:
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Treasury, is taken as the basis of risk-free interest rate r, 
together with a recommended market risk premium of 2%, 
the risk-free interest rate in this work is set at 3.19%.

(2) Volatility of oil price
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using the equation proposed by Davis (1998) as follows:
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interval i; τ is the time interval span of the historical oil price 
data, counted in years.

Based on 26 years of oil price data from the US Energy 
Information Administration (EIA), we use 145 monthly 
data of oil price from 01/2000 to 01/2012, and get oil price 
volatility σ=0.309.

(3) Random number ε
The ε in equation (7) follows normal distribution. Here 

software @Risk is applied to generate random numbers for 
oil price calculation.

Finally, r, σ and ε values are substituted in equation 
(7), and the oil price series following Geometric Brownian 
Motion is simulated.
3.2.2 Realization of oil price following mean-reverting 
process

Supposing that oil price S follows a Mean-Reverting 
Process (Schwartz, 1997):
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Based on the monthly West Texas Intermediate (WTI) 
crude oil prices from 01/2000 to 01/2012 from EIA, the 
long-run mean value to which oil price tends to revert was 
calculated to be 103.32 $/b, with the oil price volatility 
σ=0.29 and the mean-reverting rate η=0.1381.

Since the variables σ and η are determined, with equations 
(11) and (12), the mean value and variance of normal 
distribution for logarithm oil prices at year t can be obtained. 
Here t, varying from 1 to 15, corresponds to year 2012 to 
2026, and using Monte Carlo simulation, the oil prices that 
follow Mean-Reverting Process can also be obtained.
3.3 Sample size for Monte Carlo Simulation

In Monte Carlo simulation, the oil price is randomly 
selected. In this process, sample size is very important. 
If the sample size is too small, it cannot reflect the main 
features of oil prices, thus the results cannot be used as the 
basis for decision-making. If the sample size is too large, 
the simulation cost will increase. The methods used for 
determining sample size in Monte Carlo simulation include 
the absolute error method and the relative error method (Zhang 
and Wang, 2004). In this work, the relative error method is 
used for oil price simulation, i.e. the relative error, computed 
by the difference between sample mean and population mean 
divided by the later, should fall into a small scope at a certain 
probability.

Taking the Mean-Reverting Process as an example. The 
changes of mean and variance of oil price samples with 
sample size are shown in Fig. 1.
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Fig. 1 Changes of mean value and variance of oil prices with sample size

As Fig. 1 shows, when the sample size is small, the mean 
value and variance of oil prices oscillate greatly. But the 
mean value and variance tends to stable when the sample size 

Pet.Sci.(2012)9:408-415



411

is larger than a certain scale. According to the relative error 
method, the relative error coefficient is assumed to be 0.05, 
and the computing results show that once the sample size 
reaches 9,800, the probability of the relative error less than 
0.05 will achieve 0.99. Therefore, 10,000 is set as the sample 
size for Monte Carlo simulation, and for Geometric Brownian 
Motion as well since their results are close.

3.4 Scenarios design
3.4.1 Case introduction

Taking a 15-year PSC starting from 2012 as example, 
the period includes 3 years of exploration and 12 years of 
production phase. The preliminary agreement specifies that 
the royalty is 10%, and the limit for cost recovery is 40% of 
oil production; the profit oil is split at 60/40 (Government (60), 
Contractor (40)) and the income tax rate is set as 30%.
3.4.2 Scenarios design

The preliminary agreement will be used as the original 
assumption. Besides, the value sets of contract elements for 
scenario analysis are as follows:

(1) Royalty
So far the rate of royalty is often seen between 6% and 

15%, so three royalty scenarios are stipulated as 6%, 10% and 
15%.

(2) Cost oil
Before profit oil is split, the FOC can recover its 

exploration, development and operation costs from gross 
production, but usually there is a cost-limit. We set four cost 
oil scenarios: 0%, 20%, 40% and 60%.

(3) Splitting ratio of profit oil
Profit oil is split between the government representative 

(or NOC) and the contractor (FOC) at an agreed rate. Three 
scenarios (NOC/FOC) are assumed for stimulation: 60/40, 
50/50, 40/60.

(4) Income tax
Income tax is generally imposed. But in order to attract 

investments, some countries would set a tax holiday to 
encourage FOCs, and some countries even simply set the 
whole period tax-free. Accordingly, four income tax scenarios 
are drafted: 20%, 30%, 40% and 30% with a 5-year tax 
holiday.

4 Simulation results
By using software @Risk, the 10,000 oil price paths 

are generated and used respectively to calculate NPV based 
on the contract; Then, the probability density of NPVs are 
calculated and the corresponding graphs are given.

4.1 PSC simulation result
The statistic results of NPVs for the original assumption 

under the two oil price stochastic processes are shown in 
Figs. 2 and 3.

The simulation results in Figs. 2 and 3 show that the 
proposed contract has quite a high profit potential, although 
there are some differences under GBM and MRP. For GBM, 
NPVs mainly fall into the range of 100–500 with a frequency 
of 0.8102, making its mean as high as 330.9 million dollar. 
For MRP, NPVs principally fall into the range of 0–400 with 

a little higher frequency of 0.8178, thus its mean is lower than 
GBM’s. Through a further comparison of their distributions’ 
characteristics, the GBM has a little higher volatility as well 
as a higher skewness and kurtosis than those of MRP’s, 
indicating that the oil price following GBM has a higher 
volatility, which is consistent with the simulation results of 
oil price.

4.2 Effects of different contract elements on contract 
economics
4.2.1 Effect of royalty

The results of contract economics simulation for different 
royalty scenarios are shown in Fig. 4. It can be seen that the 
probability density of NPVs does not change greatly with 
an increase of royalty. When the royalty increases from 
6% to 10% and then to 15%, NPV respectively falls into 
the ranges of 127–684, 113–647 and 97–600 under GBM 
with a probability of 90%, and 59–609, 48–574 and 35–532 
respectively under MRP. The mean NPV is 354.3, 330.9 and 
301.8 million dollars under GBM, and 282.7, 262.4 and 237.1 
million dollars under MRP, respectively. Both the probability 
density and mean NPV indicate that the contract would 
result in a better return if oil price follows a GBM stochastic 
process.
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Fig. 4 Probability density graphs of NPVs at different Royalties (left is under GBM and right under MRP)

4.2.2 Effect of cost oil
Four scenarios with various limits of cost oil are designed 

in this paper: 0%, 20%, 40% and 60%, where 0% means no 
cost oil at all. Simulation results shown in Fig. 5 indicate 
that the effect of cost oil on NPV is significant, especially 
under MRP. The existence of cost oil in contract significantly 
improves the NPV for the contractor. When the cost oil rate 
is low and unfortunately the oil price also stays on low level, 
there is a risk that the amortized cost might not be recovered 
entirely, thus makes NPV negative, for example, the scenario 
with 0% cost oil rate under MRP, in which the contractor 
can get a negative NPV at a high probability around 48%. 
However, when the cost oil rate is increased to reach a certain 
level, at which most of the amortized cost can be recovered, 
further increase of cost oil rate would not make any noticeable 
difference in NPV, such as from 40% to 60% in this paper.
4.2.3 Effect of profit oil

Three scenarios are designed to investigate the effect 
of profit oil rate (government/contractor), and the results 
shown in Fig. 6 show that the effect of profit oil on NPV is 
significant under both GBM and MRP.

When the profit oil rate (government/contractor) changes 

from 60/40 to 50/50 and then to 40/60, NPV will fall into 
(113, 647), (169, 835) and (224, 1023) with a probability 
of 90% respectively under GBM, and these intervals will 
change into (48, 574), (87, 744) and (127, 914) under MRP. 
The mean value of NPV increases from 330.9 to 440.3 and 
to 549.6 million dollars under GBM, and the corresponding 
values under MRP are 262.4, 354.3 and 446.1 million dollars. 
Therefore, a higher profit oil rate allocated to a contractor 
would lead to a higher probability of gaining high NPV, and 
as well as higher resistance against the risk of low oil prices.
4.2.4 Effect of income tax

Once the profit oil is split, income tax would be levied 
from the Contractor. Sometimes, the host country would give 
FOCs a tax holiday, e.g. 5 years, to encourage investment. As 
stipulated above, four scenarios of income tax respectively 
at 20%, 30%, 40% and 30% with a 5-year tax holiday are 
designed, and the simulation results are shown in Fig. 7.

Fig. 7 shows that the effect of income tax rate on the 
probability distribution of NPVs is also significant when the 
oil price is uncertain. When the income tax rate increases 
from 20% to 30% and then to 40%, NPV mean value under 
GBM decreases from 393.4 to 330.9 and down to 268.5 
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million dollars, while under MRP, the corresponding NPV 
mean values are 314.9, 262.4 and 209.9 million dollars. 
The simulation results reveals that a tax holiday would truly 
improve NPV (in this paper, NPV with 5-year tax holiday is 
superior to that with a tax of 20%), and is attractive to FOCs. 
Meanwhile, by comparing the results, we find that PSC’s 
economics are more sensitive to tax under MRP but NPV 
mean value changes in a larger range. 

5 Conclusions
Geometric Brownian Motion (GBM) and Mean-Reverting 

Process (MRP) were taken into account to model the 
uncertain oil price, and probability density graph was used to 
reveal the simulation results of contractor’s NPV with respect 
to different contract elements. The results indicate that the 
profit oil has the most significant influence on NPV followed 
by income tax, royalty and cost oil. Low proportion of cost 

Fig. 5 Probability density graphs of NPVs at different cost oil rates (left is under GBM and right under MRP)
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oil could result in contractor’s weakness against low oil price, 
while a tax holiday would increase the contractor’s NPV 
substantially. As to the extent of NPV changes with oil price, 
MRP gets higher results than that of GBM, but with smaller 
scale and NPV range. Also, the study finds MRP is more used 
in cases that have lower expectation of oil price volatility, and 
GBM is favored where expectations of oil price volatility are 
high.

Acknowledgements
The authors are grateful for financial support from Key 

Projects of Philosophy and Social Sciences Research of 
Ministry of Education (09JZD0038).

References
Bin�demann K. Production-Sharing Agreements: An Economic Analysis. 

Oxford: Oxford Institute for Energy Studies, 1999
Che�n H T, Zhou D Q, Wang Q W. Review of oil finance theory. 

Economic Perspectives. 2008. 7: 99-105 (in Chinese)
Dav�is G A. Estimating volatility and dividend yield when valuing option 

to invest or abandon. The Quarterly Review of Economics and 
Finance. 1998. 38(3): 725-754

Dix�it A K and Pindyck R S. Investment under Uncertainty. New Jersey: 
Princeton University Press, 1994

Ge �A J, Guo P and Xu H. Theory and Practice of Oil and Gas 
Cooperation. Beijing: Petroleum Industry Press. 2004 (in Chinese)

Hao� H and Kaiser M J. Modeling China's offshore production sharing 
contracts using meta-analysis. Petroleum Science. 2010. 07(2): 283-
288

Hul�l J C. Options, Futures and Other Derivative Securities, fourth ed. 
New Jersey: Prentice Hall, 2000

Joh�nston D. International Exploration Economics, Risk, and Contract 
Analysis. Tulsa: PennWell Books. 2003

Joh�nston D. International Petroleum Fiscal Systems and Production 
Sharing Contracts. Tulsa: PennWell Books. 1994

Lin� M and Liu Z B. Stochastic simulation on the system of oil price. 
System Engineering. 2008. 26(2): 99-105 (in Chinese)

Luo� D K and Yan N. Assessment of fiscal terms of international 
petroleum contracts. Petroleum Exploration and Development. 2010. 
37(6): 756-762 (in Chinese)

Mud�ford B and Stegemeier D. Analyzing the sensitivity of production 
sharing contract terms using simulation. SPE Hydrocarbon 

Fig. 6 Probability density graphs of NPVs at different profit oil rates (left is under GBM and right under MRP)

48 574

5.0% 5.0%90.0%
0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
-200 0 200 400 600 800 1000 1200 1400 1600 1800

NPV_MRP, MM$

P
ro

ba
bi

lit
y 

de
ns

ity

60/40(Original Assumption)

169 835

5.0% 5.0%90.0%
0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
0 200 400 600 800 1000 1200 1400 1600 1800

NPV_GBM, MM$

P
ro

ba
bi

lit
y 

de
ns

ity

50/50

2000 2200

87 744
5.0% 5.0%90.0%

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
-200 0 200 400 600 800 1000 1200 1400 1600 1800

NPV_MRP, MM$

P
ro

ba
bi

lit
y 

de
ns

ity

50/50

2000 2200

127 914
5.0% 5.0%90.0%

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
-200 175 550 925 1300 1675 2050 2425

NPV_MRP, MM$

P
ro

ba
bi

lit
y 

de
ns

ity

40/60

2800

113 647
5.0% 5.0%90.0%

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
-200 0 200 400 600 800 1000 1200 1400 1600 1800

NPV_GBM, MM$

P
ro

ba
bi

lit
y 

de
ns

ity
60/40(Original Assumption)

224 1023

5.0% 5.0%90.0%
0.0020

0.0015

0.0010

0.0005

0.0000
0 200 400 600 800 1000 1200 1400 1600 1800

NPV_GBM, MM$

P
ro

ba
bi

lit
y 

de
ns

ity

40/60

2000 2200

Pet.Sci.(2012)9:408-415



415

Fig. 7 Probability density graphs of NPVs at different Tax scenarios (left is under GBM and right under MRP)
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