
姓名:宋文輝
職稱(chēng):副教授(校優(yōu)秀青年學(xué)者)
教育和工作經(jīng)歷:
2010.09 - 2014.07 中國(guó)石油大學(xué)(華東),,石油工程,,本科
2013.01 - 2013.07 澳大利亞新南威爾士大學(xué),國(guó)家留學(xué)基金委優(yōu)秀本科生
2014.09 - 2020.06 中國(guó)石油大學(xué)(華東),,油氣田開(kāi)發(fā)工程,,碩博連讀,,博士
2015.12 - 2016.12 英國(guó)赫瑞瓦特大學(xué),聯(lián)合培養(yǎng)
2018.12 - 2019.12 美國(guó)德克薩斯大學(xué)奧斯汀分校,,聯(lián)合培養(yǎng)
2020.09 - 2023.01 中國(guó)石油大學(xué)(華東),,博士后
2023.09 - 至今 中國(guó)石油大學(xué)(北京),師資博士后,,副教授
所在系所:油氣井工程系
電子郵箱:song_wen_hui_upc@163.com
個(gè)人主頁(yè):https://scholar.google.com/citations?user=LoTLFg0AAAAJ&hl=en
研究方向:非常規(guī)油氣藏開(kāi)發(fā),、巖石力學(xué)、油氣滲流理論與應(yīng)用,、數(shù)字巖心技術(shù)
代表性論文著作:
[1] Song, W., Lu, Y., Gao, Y., Yao, B., Jin, Y., Chen, M. (2024). A fractal-based oil transport model with uncertainty reduction for a multi-scale shale pore system. Fractals, accepted.
[2] 夏海幫,韓克寧,宋文輝*,,等.頁(yè)巖氣藏多尺度孔縫介質(zhì)壓裂液微觀賦存機(jī)理研究[J].油氣藏評(píng)價(jià)與開(kāi)發(fā),2023,13(05):627-635+685.
[3] Song, W., Yao, B., Sun, H., Yang, Y., Zhong, J., & Yao, J. (2023). Nanoscale Three-Phase Transport in a Shale Pore Network with Phase Change and Solid–Fluid Interaction. Energy & Fuels. 37 (18), 13851-13865.(主編邀稿)
[4] Song, W., Prodanovi?, M., Yao, J., & Zhang, K. (2023). Nano-scale wetting film impact on multiphase transport properties in porous media. Transport in Porous Media, 149(1), 5-33.
[5] Song, W., Prodanovic, M., Santos, J. E., Yao, J., Zhang, K., & Yang, Y. (2023). Upscaling of Transport Properties in Complex Hydraulic Fracture Systems. SPE Journal, 28(03), 1026-1044.
[6] Song, W., Yao, J., Zhang, K., Yang, Y., Sun, H., & Wang, Z. (2022). Nano-scale multicomponent hydrocarbon thermodynamic transport mechanisms in shale oil reservoir. Journal of Petroleum Science and Engineering, 111093.
[7] Song, W., Yao, J., Zhang, K., Yang, Y., & Sun, H. (2022). Understanding gas transport mechanisms in shale gas reservoir: Pore network modelling approach. Advances in Geo-Energy Research, 6(4), 359-360.
[8] Song, W., Yao, J., Zhang, K., Yang, Y., & Sun, H. (2022). Accurate Prediction of Permeability in Porous Media: Extension of Pore Fractal Dimension to Throat Fractal Dimension. Fractals, 2250038. (期刊封面文章)
[9] Song, W., PRODANOVIC, M., Yao, J., Zhang, K., & Wang, Q. (2022). Analytical Electrical Conductivity Models for Single-Phase and Multi-Phase Fractal Porous Media. Fractals, 30(03), 2250060.
[10] Song, W., Yao, J., Zhang, K., Sun, H., & Yang, Y. (2022). The Impacts of Pore Structure and Relative Humidity on Gas Transport in Shale: A Numerical Study by the Image-Based Multi-scale Pore Network Model. Transport in Porous Media, 144(1), 229-253.
[11] Zhu, Q, Song, W.*, Yang, Y., Lu, X., Liu, L., Zhang, Y., Sun, H., Yao, J. (2021). An advection-diffusion-mechanical deformation integral model to predict coal matrix methane permeability combining digital rock physics with laboratory measurements. Applied Geochemistry. 126:104861.
[12] Song, W., Yao, J., Zhang K. (2021). Study on gas adsorption and transport behavior in shale organic nanopore. Chinese Journal of Theoretical and Applied Mechanics, 53, 2179-2192.
[13] 宋文輝, 劉磊, 孫海, 張凱, 楊永飛, 姚軍. (2021). 基于數(shù)字巖心的頁(yè)巖油儲(chǔ)層孔隙結(jié)構(gòu)表征與流動(dòng)能力研究. 油氣藏評(píng)價(jià)與開(kāi)發(fā), 11(4), 497-505(期刊年度優(yōu)秀論文)
[14] Song, W., Yin, Y., Landry, C., Prodanovi?, M., Qu, Z., Yao, J. (2020). A local-effective-viscosity multi-relaxation-time lattice Boltzmann-pore network coupling model to predict gas transport property in complex nanoporous media. SPE Journal, 26(01), 461-481.
[15] Song, W., Yao, J., Li, Y., Sun, H., Wang, D., Yan, X. (2020). Gas–water relative permeabilities fractal model in dual-wettability multiscale shale porous media during injected water spontaneous imbibition and flow back process. Fractals, 28(07), 2050103.
[16] Song, W., Yao, J., Wang, D., Li, Y., Sun, H., & Yang, Y. (2020). Dynamic pore network modelling of real gas transport in shale nanopore structure. Journal of Petroleum Science and Engineering, 184, 106506.
[17] Song, W., Liu, L., Wang, D., Li, Y., Prodanovi?, M., & Yao, J. (2019). Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material. Chemical Engineering Journal, 122974.
[18] Song, W., Yao, J., Wang, D., Li, Y., Sun, H., Yang, Y., & Zhang, L. (2019). Nanoscale confined gas and water multiphase transport in nanoporous shale with dual surface wettability. Advances in Water Resources.
[19] Song, W., Wang, D., Yao, J., Li, Y., Sun, H., Yang, Y., & Zhang, L. (2019). Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability. Fuel, 241, 522-532.
[20] Yao, J., Song, W.*, Wang, D., Sun, H., & Li, Y. (2019). Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media. International Journal of Heat and Mass Transfer, 141, 156-167.
[21] Song, W., Yao, B., Yao, J., Li, Y., Sun, H., Yang, Y., & Zhang, L. (2018). Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir. Chemical Engineering Journal, 352, 644-654.
[22] Song, W., Yao, J., Ma, J., Sun, H., Li, Y., Yang, Y., & Zhang, L. (2018). Numerical simulation of multiphase flow in nanoporous organic matter with application to coal and gas shale systems. Water Resources Research, 54(2), 1077-1092.
[23] Song, W., Yao, J., Ma, J., Li, Y., & Han, W. (2018). A pore structure based real gas transport model to determine gas permeability in nanoporous shale. International Journal of Heat and Mass Transfer, 126, 151-160.
[24] Song, W., Yao, J., Ma, J., Couples, G. D., Li, Y., & Sun, H. (2018). Pore-scale numerical investigation into the impacts of the spatial and pore-size distributions of organic matter on shale gas flow and their implications on multiscale characterisation. Fuel, 216, 707-721.
[25] Song W., Yao J, Li Y, et al. Fractal models for gas slippage factor in porous media considering second-order slip and surface adsorption[J]. International Journal of Heat and Mass Transfer, 2018, 118: 948-960.
[26] Song, W., Yao, J., Ma, J., Li, A., Li, Y., Sun, H., & Zhang, L. (2018). Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems. Fuel, 215, 196-203.
[27] Song, W., Liu, H., Wang, W., Zhao, J., Sun, H., Wang, D., ... & Yao, J. (2018). Gas flow regimes judgement in nanoporous media by digital core analysis. Open Physics, 16(1), 448-462.
[28] Song, W., Yao, J., Ma, J., Couples, G., & Li, Y. (2017). Assessing relative contributions of transport mechanisms and real gas properties to gas flow in nanoscale organic pores in shales by pore network modelling. International Journal of Heat and Mass Transfer, 113, 524-537.
[29] Song, W., Yao, J., Li, Y., Yang, Y., & Sun, H. (2017). New pore size distribution calculation model based on chord length and digital image. Journal of Natural Gas Science and Engineering, 48, 111-118.
[30] 姚軍, 宋文輝, 李陽(yáng), 等. 有機(jī)質(zhì)孔隙對(duì)頁(yè)巖氣流動(dòng)能力影響研究. 中國(guó)科學(xué): 物理學(xué)力學(xué)天文學(xué), 2015, 60(60), 2259.
[31] Song, W., Yao, J., Li, Y., Sun, H., ... & Sui, H. (2016). Apparent gas permeability in an organic-rich shale reservoir. Fuel, 181, 973-984. (ESI 高被引)
[32] 宋文輝, 姚軍, 李陽(yáng), 等. 孔隙尺度下巖性分類(lèi)及參數(shù)粗化. 科學(xué)通報(bào), 2017, 62(16):1774-1787.
[33] Wang, D., Song, W., Yao, J., Yang, Q., Yan, X., & Sun, H. (2021). A fractal multiphase transport model in shale porous media with multiple transport mechanisms and rock–fluid interaction. Fractals, 29(02), 2150037.
代表性專(zhuān)利與軟著:
[1] 宋文輝,姚軍,,張凱,。一種基于雙重介質(zhì)孔隙網(wǎng)絡(luò)模型的頁(yè)巖滲透率解釋方法。2021106954210(已授權(quán))
[2] 宋文輝,,姚軍,,張凱。一種區(qū)域結(jié)構(gòu)差異化的巖石多尺度孔隙網(wǎng)絡(luò)模型構(gòu)建方法,。2021106290370(已授權(quán))
[3] 姚軍,,宋文輝,王曉宇。一種基于CT掃描圖像的巖石孔滲測(cè)量方法,。2020111371744(已授權(quán))
[4] 賈存奇,,姚軍,宋文輝,,黃朝琴,。一種碳酸鹽巖酸化數(shù)值模擬方法。2020107700113(已授權(quán))
[5] 宋文輝,。頁(yè)巖儲(chǔ)層數(shù)字巖心孔隙結(jié)構(gòu)和流動(dòng)能力分析軟件V1.0,。2021SR1366275。
科學(xué)研究項(xiàng)目:
[1] 中國(guó)石油大學(xué)(北京)優(yōu)秀青年學(xué)者培育計(jì)劃,,主持
[2] 國(guó)家自然科學(xué)基金青年基金,,考慮應(yīng)力場(chǎng)-化學(xué)場(chǎng)耦合的頁(yè)巖油藏注二氧化碳微觀滲流模擬研究,2022-2025,,主持
[3] 中國(guó)科協(xié)青年人才托舉工程,,油氣滲流,2021-2024,,主持
[4] 中國(guó)博士后國(guó)資計(jì)劃B檔資助,,2013-2025,主持
[5] 中國(guó)石油天然氣股份有限公司塔里木油田分公司,,萬(wàn)米深層巖石力學(xué)基礎(chǔ)理論及其應(yīng)用,,2023-2026,研究骨干
[6] 山東省自然科學(xué)基金,,基于數(shù)字巖心的深層頁(yè)巖氣藏受限流體微觀滲流機(jī)理研究,,2022-2024,主持
[7] 頁(yè)巖氣評(píng)價(jià)與開(kāi)采四川省重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金:考慮受限相態(tài)的深層頁(yè)巖氣藏滲流機(jī)理及產(chǎn)能模擬方法,,主持
[8] 山東省博士后創(chuàng)新項(xiàng)目一等資助,,熱流固耦合作用下深層頁(yè)巖氣藏滲流機(jī)理及模擬方法研究,,2021-2022,,主持
[9] 青島市博士后應(yīng)用項(xiàng)目,熱流固耦合作用下深層頁(yè)巖多相多組分微觀滲流機(jī)理及模擬方法研究,,2021-2022,,主持
[10] 國(guó)家自然科學(xué)基金委員會(huì),重點(diǎn)項(xiàng)目,,深層超深層油氣藏開(kāi)發(fā)基礎(chǔ)理論研究,,2021-2025,研究骨干
[11] 中石化華東局,,南川地區(qū)頁(yè)巖氣藏儲(chǔ)層精細(xì)描述和開(kāi)發(fā)評(píng)價(jià)研究,,2021-2022,研究骨干
[12] 科技部,國(guó)家油氣重大專(zhuān)項(xiàng)專(zhuān)題,,2016ZX05061-014,,基于數(shù)字巖心的頁(yè)巖氣藏微觀流動(dòng)模擬及產(chǎn)能評(píng)價(jià)方法研究,2016-01至2020-12,,研究骨干
[13] 國(guó)家自然科學(xué)基金重大項(xiàng)目,,51490654,頁(yè)巖油氣多尺度滲流特征與開(kāi)采理論,,2015-01至2019-12,,研究骨干
[14] 國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目,51234007,,頁(yè)巖氣藏開(kāi)采基礎(chǔ)研究,,2013-01至2017-12,研究骨干
獎(jiǎng)勵(lì)與榮譽(yù):
[1] 中國(guó)發(fā)明協(xié)會(huì)發(fā)明創(chuàng)業(yè)獎(jiǎng)創(chuàng)新獎(jiǎng)一等獎(jiǎng)(排名第3),,2022
[2] 中國(guó)科協(xié)青年人才托舉工程,,2021
[3] 山東省優(yōu)秀博士論文,2021
[4] 中國(guó)石油和化工自動(dòng)化行業(yè)科學(xué)技術(shù)獎(jiǎng)科技進(jìn)步一等獎(jiǎng)(排名第7),,2021
[5] 中國(guó)石油大學(xué)(華東)校長(zhǎng)獎(jiǎng),,2020
[6] 山東省研究生優(yōu)秀成果一等獎(jiǎng),2019
[7] 孫越崎優(yōu)秀學(xué)生獎(jiǎng),,2019
[8] 中國(guó)石油大學(xué)(華東)學(xué)術(shù)十杰,,2018
社會(huì)與學(xué)術(shù)兼職:
[1] 《石油科學(xué)通報(bào)》執(zhí)行編委
[2] International journal of coal science & technology科學(xué)編輯
[3] Petroleum Science青年編委
[4] Advances in Geo-Energy Research 青年編委
[5] Deep Underground Science and Engineering 青年編委
[6] 《天然氣工業(yè)》青年編委
[7] 《工程科學(xué)學(xué)報(bào)》青年編委
[8] 《油氣地質(zhì)與采收率》首屆青年編委
[9] 《油氣藏評(píng)價(jià)與開(kāi)發(fā)》首屆青年編委
[10] Energies客座編輯
[11] Artificial Intelligence in Geosciences客座編輯
[12] Frontiers in Earth Science 客座編輯