姓名: 盧運(yùn)虎
職稱(chēng): 教授、博導(dǎo)
教育與工作經(jīng)歷:
2002-2006 長(zhǎng)江大學(xué)(原江漢石油學(xué)院) 本科
2006-2011 中國(guó)石油大學(xué)(北京)碩博連讀 博士
2011-2013 塔里木油田博士后工作站 師資博士后
2013-2015 中國(guó)石油大學(xué)(北京) 教師
2015-至今 中國(guó)石油大學(xué)(北京) 副教授
2019.2-12 Curtin University 訪(fǎng)問(wèn)學(xué)者
電子郵箱: [email protected]/[email protected]
聯(lián)系電話(huà): 010-89732165
所在系所: 油氣井工程系
研究方向: 石油工程巖石力學(xué)、井壁穩(wěn)定、水力壓裂、井筒完整性等
教學(xué)情況:本科生《鉆井工程》、研究生《石油工程巖石力學(xué)》、《鉆井工程實(shí)踐與案列分析》
論文著作:
(一)期刊論文:
[1]Role of brine composition on rock surface energy and its implications for subcritical crack growth in calcite[J]. Journal of Molecular Liquids, 2020,303: 112638.
[2]Wetting Behavior of Shale Rocks and Its Relationship to Oil Composition[J]. Energy & Fuels, 2019, 33(12): 12270-12277.
[3]Characterization of Shale Softening by Large Volume-Based Nanoindentation[J]. Rock Mechanics and Rock Engineering, 2019: 1-17.
[4]Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs[J]. Fuel, 2019, 249: 434-440.
[5]Effect of Shale Anisotropy on Hydration and Its Implications for Water Uptake[J]. Energies, 2019, 12(22): 4225.
[6]Predicting seismic-based risk of lost circulation using machine learning[J]. Journal of Petroleum Science and Engineering, 2019, 176: 679-688.
[7]The influence of barrier coastal sedimentary system lost circulation in sandstone[J]. Journal of Petroleum Science and Engineering, 2019: 106654
[8]Comments on the mode II fracture from disk-type specimens for rock-type materials[J]. Engineering Fracture Mechanics, 2019, 211: 303-320.
[9]Nonlinear Stress-Strain Model for Confined Well Cement[J]. Materials, 2019, 12(16): 2626.
[10]Unifying acoustic emission and digital imaging observations of quasi-brittle fracture[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102301.
[11]Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure[J]. Energy & Fuels, 2019, 33(9): 8250-8258.
[12]Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J]. Applied Thermal Engineering, 2018, 142: 166-183.
[13]An Analytical Solution for Pseudosteady-State Flow in a Hydraulically Fractured Stratified Reservoir With Interlayer Crossflows[J]. SPE Journal, 2017, 22(04): 1,103-1,111.
[14]Dynamic analysis of a cylindrical casing–cement structure in a poroelastic stratum[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(12): 1362-1389.
[15]Productivity-Index optimization for hydraulically fractured vertical wells in a circular reservoir: a comparative study with analytical solutions[J]. SPE Journal, 2016, 21(06): 2,208-2,219.
[16]Experimental study and artificial neural network simulation of the wettability of tight gas sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 387-400.
[17]A wellbore stability model for a deviated well in a transversely isotropic formation considering poroelastic effects[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3671-3686.
[18]Theoretical and experimental study on the penetration rate for roller cone bits based on the rock dynamic strength and drilling parameters[J]. Journal of natural gas science and engineering, 2016, 36: 117-123.
[19]Oil-based critical mud weight window analyses in HTHP fractured tight formation[J]. Journal of Petroleum Science and Engineering, 2015, 135: 750-764.
[20]Calculation model for borehole collapse volume in horizontal openhole in formation with multiple weak planes[J]. Petroleum Exploration and Development, 2014, 41(1): 102-107.
[21]Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 364-378.
[22]Multilayer pressure containment model and its application in deep well fractured formation[J]. Rock mechanics and rock engineering, 2013, 46(5): 1255-1266.
[23]A Mechanical Model of Borehole Stability for Weak Plane Formation under Porous Flow. Petroleum Science & Technology[J],2012,30(15):1629-1638.
[24]Influence of Porous Flow on Wellbore Stability for Inclined Well in Weak Plane Formation Petroleum science & Technology[J],2012,30(17):616-624.
[25]The Development and Application of an Environmentally Friendly Encapsulator EBA-20. Petroleum Science & Technology[J],2012,30(21): 2227-2235
[26]The study on instability mechanism of fractured reservoir during well test for horizontal well[J]. Petroleum science & Technology, 2012,30(22):637-643.
[27]Experimental study on the performance of sand control screens for gas wells[J]. Journal of petroleum exploration and production technology, 2012, 2(1): 37-47.EI
[28]Analysis of the vertical borehole stability in anisotropic rock formations[J]. Journal of Petroleum Exploration and Production Technology, 2012, 2(4): 197-207.EI
[29]Salt-gypsum bed complicates Tarim horizontal drilling[J]. Oil & gas journal, 2011, 109(11).
[30]Determination of rock fracture toughness K_IIC and its relationship with tensile strength[J]. Rock mechanics and rock engineering, 2011, 44(5): 621.
[31]Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J]. Rock mechanics and rock engineering, 2011, 44(6): 711.
[32]高溫?zé)崽幚砉埠团璧馗蔁釒r力學(xué)特性實(shí)驗(yàn)研究[J].地下空間與工程學(xué)報(bào),2020,16(1):114-121.
[33]深層頁(yè)巖氣藏粘土礦物水巖作用微觀機(jī)制[J].地球化學(xué),2020,49(2).
[34]高溫高壓耦合下含不同傾角充填縫砂巖的強(qiáng)度實(shí)驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(S1):2668-2679.
[35]高溫下頁(yè)巖水化損傷的各向異性實(shí)驗(yàn)研究[J].中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué),2017,47(11):138-145.
[36]各向異性地層中斜井井壁失穩(wěn)機(jī)理[J].石油學(xué)報(bào),2013,34(03):563-568.
[37]頁(yè)巖氣井脆性頁(yè)巖井壁裂縫擴(kuò)展機(jī)理[J].石油鉆探技術(shù),2012,40(04):13-16.
[38]鉆井液浸泡下深部泥巖強(qiáng)度特征試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(07):1399-1405.
[39]碳酸鹽巖聲發(fā)射地應(yīng)力測(cè)量方法實(shí)驗(yàn)研究[J].巖土工程學(xué)報(bào),2011,33(08):1192-1196.
[40]山前淺部鹽層斷層附近套管損壞分析[J].石油鉆采工藝,2011,33(03):109-112.
[41]深層地應(yīng)力地理方位確定的新方法[J].巖石力學(xué)與工程學(xué)報(bào),2011,30(02):233-237.
[42]南海西江油田古近系泥頁(yè)巖地層防塌鉆井液技術(shù)[J].石油鉆探技術(shù),2019,47(06):40-47.
[43]超深井筒溫度分布及其對(duì)圍巖力學(xué)性質(zhì)的影響研究[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(S1):2831-2839.
[44]川南深層頁(yè)巖各向異性特征及對(duì)破裂壓力的影響[J].石油鉆探技術(shù),2018,46(03):78-85.
[45]密地層井壁失穩(wěn)的孔隙彈性動(dòng)力學(xué)機(jī)理研究[J].石油科學(xué)通報(bào),2017,2(04):478-489.
[46]頁(yè)巖氣開(kāi)發(fā):巖石力學(xué)的機(jī)遇與挑戰(zhàn)[J].中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué),2017,47(11):6-18.
[47]復(fù)合鹽膏層界面錯(cuò)動(dòng)的變形機(jī)理及數(shù)值模擬研究[J].石油科學(xué)通報(bào),2019,4(04):390-402.
[48]基于近鉆頭振動(dòng)數(shù)據(jù)的海底硬質(zhì)地層探測(cè)方法[J].船海工程,2019,48(04):112-116.
[49]三維頁(yè)巖儲(chǔ)層多重壓力流固耦合模型研究[J].中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué),2019,49(01):40-52.
[50]頁(yè)巖潤(rùn)濕性的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型[J].斷塊油氣田,2018,25(06):726-731.
[51]干熱巖地?zé)醿?chǔ)層鉆井和水力壓裂工程技術(shù)難題和攻關(guān)建議[J].中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué),2018,48(12):97-102.
[52]溫壓條件下蒙脫石水化的分子動(dòng)力學(xué)模擬[J].硅酸鹽學(xué)報(bào),2018,46(10):1489-1498.
[53]縫網(wǎng)頁(yè)巖儲(chǔ)層非線(xiàn)性耦合滲流模型研究[J].中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué),2018,48(06):98-112.
[54]加載方式對(duì)水泥石氣密封性影響研究[J].石油鉆探技術(shù),2018,46(01):55-61.
[55]非均勻應(yīng)力場(chǎng)中井筒卸載過(guò)程井壁圍巖孔隙彈性動(dòng)力響應(yīng)機(jī)制[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(05):1115-1125.
[56]塔里木盆地玉科區(qū)塊超深井膏鹽層段套管損壞機(jī)理與防治措施[J].天然氣工業(yè),2016,36(12):92-99.
[57]沖擊作用下巖石裂紋長(zhǎng)度預(yù)測(cè)模型及數(shù)值模擬研究[J].石油鉆探技術(shù),2016,44(04):41-46.
[58]高壓氣體滲流對(duì)裸眼井筒塑性區(qū)半徑的影響分析[J].巖石力學(xué)與工程學(xué)報(bào),2015,34(S2):4286-4294.
[59]鹽膏巖DRA-Kaiser地應(yīng)力測(cè)試方法初探[J].巖石力學(xué)與工程學(xué)報(bào),2015,34(S1):3138-3142.
[60]超深井側(cè)鉆段泥巖井壁失穩(wěn)分析[J].石油鉆探技術(shù),2014,42(06):53-58.
[61]基于薄板理論的碳酸鹽巖地層壓力檢測(cè)方法探討[J].石油鉆探技術(shù),2014,42(05):57-61.
[62]多弱面地層水平井裸眼井壁垮塌量計(jì)算模型[J].石油勘探與開(kāi)發(fā),2014,41(01):102-107.
[63]石膏含量對(duì)鹽膏層蠕變速率影響的研究[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(S2):3238-3244.
[64]水平井造斜段鹽膏層套管等效應(yīng)力分析[J].鉆采工藝,2013,36(02):87-89+11.
[65]裂縫性?xún)?chǔ)層裸眼井壁失穩(wěn)影響因素分析[J].石油鉆采工藝,2013,35(02):39-43.
[66]深部鹽膏巖地層套管磨損后等效應(yīng)力分析[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,37(01):75-79.
[67]水平井試油過(guò)程裂縫性?xún)?chǔ)層失穩(wěn)機(jī)理[J].石油學(xué)報(bào),2011,32(02):295-298.
[68]快速鉆井劑穩(wěn)定井壁快速鉆進(jìn)作用機(jī)理研究[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,32(01):165-169+205-206.
[69]一種氣體鉆井井壁穩(wěn)定性分析的簡(jiǎn)易方法[J].石油鉆采工藝,2009,31(06):48-52.
[70]一種井漏層位鉆前風(fēng)險(xiǎn)預(yù)測(cè)新方法[J].石油鉆采工藝,2008(03):24-28.
(二)會(huì)議論文:
[1]Analytical model of collapse pressure in fracture zone based on hot dry rock concerning the effect of incompatible deformation[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[2]Effect of temperature recovery on time-dependent wellbore stability in geothermal drilling[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[3]Experimental Investigation on Mechanical Properties and Failure Mode of Natural Fractured Sandstone[C]//SPE Argentina Exploration and Production of Unconventional Resources Symposium. Society of Petroleum Engineers, 2018.
[4]Optimizing Fluid Production From Porous Media: From Hydraulic Fractures to Plant Roots[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2016.
[5]Experiments and Finite Element Simulation on Cement Sheath Failure in HPHT Well Fracturing[C].50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June, Houston, Texas,2016.
[6]A Quantitative Approach to the Design and Evaluation of Shale Drilling Fluids Based on Multi-Field Coupling Theory[C]//Offshore Technology Conference Asia. Offshore Technology Conference, 2016.
[7]Rock Breaking Model Under Dynamic Load with the Application of Torsional and Axial Percussion Hammer[C]//International Petroleum Technology Conference. International Petroleum Technology Conference, 2016.
[8]Anisotropic wellbore stability model for transversely isotropic formation and its application in drilling through shale formation[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers, 2015.
[9]The First Application of Whole Process Underbalanced Drilling in Ultradeep Horizontal Well in Tarim Oilfield[C]//SPE/IADC Managed Pressure Drilling & Underbalanced Operations Conference & Exhibition. Society of Petroleum Engineers, 2014.
[10]Pore pressure prediction in ultra-deep salt formation in Tarim Basin[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014.
[11]Study on Nonlinear Large Deformation Measurement and Constitutive Relationship of Mudstone Sidewall 2nd International young scholars’ symposium on rock mechanics,2011, 161-165.
[12]Experimental study of wellbore deformation in a deep claystone formation International Workshop on True Triaxial Testing of Rocks,2011,87-90.
(三)授權(quán)專(zhuān)利:
[1]一種能夠誘導(dǎo)本征尖銳裂縫的雙懸臂梁斷裂韌性測(cè)試方法[P].CN108333045A,2018-07-27.
[2]一種水泥環(huán)氣密封性失效判斷方法[P]. CN107991165A,2018-05-04.
[3]一種多分支孔眼鉆及多孔眼并行鉆進(jìn)方法[P]. CN106382096A,2017-02-08.
[4]基于地質(zhì)力學(xué)的裂縫型地層定向井造斜方位的設(shè)計(jì)方法[P].CN105574251A,2016-05-11.
[5]一種預(yù)測(cè)弱面地層坍塌壓力當(dāng)量密度窗口的方法[P]. CN104806233A,2015-07-29.
[6]一種裂縫型地層防塌鉆井液性能參數(shù)的設(shè)計(jì)方法[P]. CN104778303A,2015-07-15.
[7]一種油基鉆井液參數(shù)的設(shè)計(jì)方法[P]. CN104732064A,2015-06-24.
[8]一種水溶性無(wú)機(jī)納米材料的制備方法[P]. CN104692400A,2015-06-10.
[9]一種硬脆性水化泥頁(yè)巖人造巖心的制備方法[P]. CN104692726A,2015-06-10.
[10]一種層狀硬脆性泥頁(yè)巖水化特性的評(píng)價(jià)方法[P]. CN104675395A,2015-06-03.
[11]一種層狀硬脆性泥頁(yè)巖水化特性的評(píng)價(jià)裝置[P]. CN104675396A,2015-06-03.
[12]一種高頻動(dòng)載破巖工具及其使用方法[P]. CN109630010A,2019-04-16.
[13]一種雙懸臂梁斷裂韌性測(cè)試裝置[P]. CN108303314A,2018-07-20.
[14]基于旋轉(zhuǎn)粒子噴射的近井地帶處理裝置[P]. CN205477555U,2016-08-17.
[15]一種利用地質(zhì)構(gòu)造面曲率預(yù)測(cè)區(qū)域高壓鹽水層孔隙壓力的方法[P]. CN101942992A,2011-01-12.
[16]一種利用測(cè)井資料檢測(cè)高壓鹽水層孔隙壓力的方法[P]. CN101936157A,2011-01-05.
[17]一種基于壓裂地質(zhì)體可壓性的井型設(shè)計(jì)方法及裝置[P]. CN103390108A,2013-11-13.
[18]一種基于壓裂地質(zhì)體可壓性的儲(chǔ)層分析方法及裝置[P]. CN103382838A,2013-11-06.
[19]一種利用小波變換計(jì)算地層孔隙壓力的方法[P]. CN103089253A,2013-05-08.
[20]一種利用測(cè)井資料預(yù)測(cè)碳酸鹽巖地層孔隙壓力的方法[P]. CN101963056A,2011-02-02.
[21]裂縫性易漏地層堵漏承壓能力評(píng)價(jià)裝置[P]. CN203570309U,2014-04-30.
[22]井眼徑向變形的測(cè)量裝置[P]. CN202170792U,2012-03-21.
承擔(dān)項(xiàng)目情況:
[1]深層頁(yè)巖水力裂縫閉合的蠕變機(jī)理研究,國(guó)家自然科學(xué)基金面上項(xiàng)目(主持),2019-2021
[2]頁(yè)巖油氣高效開(kāi)發(fā)基礎(chǔ)理論研究,國(guó)家自然科學(xué)基金重大項(xiàng)目(研究骨干),2015-2019
[3]高溫高應(yīng)力鹽膏層彎曲井筒圍巖失穩(wěn)機(jī)理與控制理論研究,國(guó)家自然科學(xué)青年基金項(xiàng)目(主持),2013-2015
[4]頁(yè)巖粘土礦物表面納米材料改性對(duì)井壁穩(wěn)定作用機(jī)理研究,中國(guó)博士后科學(xué)基金特別資助(主持),2013-2014
[5]超深裂縫性氣藏井筒失穩(wěn)機(jī)理及轉(zhuǎn)向工藝優(yōu)化研究,國(guó)家油氣重大專(zhuān)項(xiàng)(負(fù)責(zé)),2016-2019
[6]烏石17-2油田井壁穩(wěn)定性及鉆井提速技術(shù)研究,中海油科技項(xiàng)目(負(fù)責(zé)),2019-2021
[7]鉆井液穩(wěn)定井壁的抑制性定量評(píng)價(jià)新方法,中石油科技項(xiàng)目(負(fù)責(zé)),2018-2020
[8]克拉蘇構(gòu)造帶鹽膏層力學(xué)機(jī)制及蠕變規(guī)律系統(tǒng)研究,中石油科技項(xiàng)目(負(fù)責(zé)),2018-2021
[9]碳酸鹽巖地層漏失預(yù)測(cè)模型及井下復(fù)雜隨鉆診斷系統(tǒng)的研究與開(kāi)發(fā),中石油科技項(xiàng)目(負(fù)責(zé)),2018-2019
[10]深層高應(yīng)力環(huán)境下井壁失穩(wěn)物理模擬實(shí)驗(yàn)與評(píng)價(jià)研究,中石化科技項(xiàng)目(負(fù)責(zé)),2019-2020
[11]水基鉆井液耦合下頁(yè)巖井筒失穩(wěn)封堵力學(xué)機(jī)制研究,中石化科技項(xiàng)目(負(fù)責(zé)),2019-2020
[12]深水天然氣水合物儲(chǔ)層試采井筒圍巖失穩(wěn)機(jī)理研究,中石油科技項(xiàng)目(負(fù)責(zé)),2017-2018
科研教學(xué)獎(jiǎng)勵(lì):
[1]高溫高壓超深復(fù)合鹽膏層井筒完整性關(guān)鍵技術(shù)及工業(yè)化應(yīng)用(1/10),中國(guó)巖石力學(xué)與工程學(xué)會(huì)科技進(jìn)步二等獎(jiǎng),2019年
[2]礦業(yè)、石油及安全工程領(lǐng)域優(yōu)秀青年科技人才提名獎(jiǎng),國(guó)家自然科學(xué)基金委員會(huì),2018年
[3]深層致密性地層高效儲(chǔ)層改造一體化關(guān)鍵技術(shù)及應(yīng)用(3/7),中國(guó)產(chǎn)學(xué)研創(chuàng)新成果一等獎(jiǎng), 2017年
[4]深層應(yīng)力敏感性地層承壓堵漏關(guān)鍵技術(shù)(3/6),中國(guó)巖石力學(xué)與工程學(xué)會(huì)技術(shù)發(fā)明二等獎(jiǎng),2017年
[5]中東富油氣區(qū)復(fù)雜地層井筒關(guān)鍵技術(shù)及工業(yè)化應(yīng)用(6/15),中國(guó)石油與化學(xué)工業(yè)聯(lián)合會(huì)科技進(jìn)步一等獎(jiǎng),2015年
[6]新疆優(yōu)秀博士后,新疆維吾爾自治區(qū) ,2012年
[7]氣液介質(zhì)轉(zhuǎn)換的井壁失穩(wěn)機(jī)理研究,中國(guó)巖石力學(xué)與工程學(xué)會(huì)優(yōu)秀博士學(xué)位論文,2012年
[8]氣液介質(zhì)轉(zhuǎn)換的井壁失穩(wěn)機(jī)理研究,中國(guó)石油大學(xué)(北京)優(yōu)秀博士學(xué)位論文,2012年
社會(huì)與學(xué)術(shù)兼職:
[1] 中國(guó)巖石力學(xué)與工程學(xué)會(huì)深層巖石力學(xué)與油氣工程專(zhuān)委會(huì)秘書(shū)長(zhǎng)
[2] 國(guó)際巖石力學(xué)學(xué)會(huì)會(huì)員
[3] SPE(美國(guó)石油工程師協(xié)會(huì))會(huì)員
[4] 中國(guó)巖石與工程學(xué)會(huì)會(huì)員