個(gè)人簡介:
梁天博,,男,, 1986年4月生,,博士,副研究員,,校青年拔尖人才,博士生導(dǎo)師(可招收學(xué)術(shù)與工程博士),。
研究領(lǐng)域:致密儲(chǔ)層滲流機(jī)理與化學(xué)提高采收率方法,。
所屬系所:儲(chǔ)層改造與開發(fā)工程研究所
聯(lián)系方式:[email protected];[email protected]
教育經(jīng)歷:
2020-至今 中國石油大學(xué)(北京)非常規(guī)天然氣研究院,,副研究員
2017-2019 中國石油大學(xué)(北京)非常規(guī)天然氣研究院,助理研究員(青年拔尖人才)
2012-2016 美國University of Texas at Austin,,石油工程,,博士
2009-2011 美國University of California at Davis,材料科學(xué)與工程,,碩士
2005-2009 清華大學(xué),,材料科學(xué)與工程,學(xué)士
科技獎(jiǎng)勵(lì):
[1] 致密油氣藏兼顧強(qiáng)化縫網(wǎng)網(wǎng)系與儲(chǔ)層供給的納米增效壓裂技術(shù)與應(yīng)用,,中國石油和化學(xué)工業(yè)聯(lián)合會(huì),,科技進(jìn)步一等獎(jiǎng)(省部級(jí)),2022年,,排名5/8,。
[2] 致密油藏高效壓裂與增能一體化技術(shù)及應(yīng)用,中國石油和化工自動(dòng)化應(yīng)用協(xié)會(huì),,科技進(jìn)步一等獎(jiǎng)(省部級(jí)),,2021年,排名1/15,。
[3] 準(zhǔn)噶爾盆地西北緣開發(fā)區(qū)塊壓裂提產(chǎn)技術(shù)及工業(yè)化應(yīng)用,,新疆維吾爾自治區(qū)人民政府,科技進(jìn)步二等獎(jiǎng)(省部級(jí)),,2021年,,排名2/9。
[4] 致密油氣藏高密均勻造縫耦合基質(zhì)深度改性壓裂技術(shù)與應(yīng)用,,中國石油和化學(xué)工業(yè)聯(lián)合會(huì),,科技進(jìn)步一等獎(jiǎng)(省部級(jí)),2019年,,排名7/15,。
主持基金項(xiàng)目:
[1] 分離壓微尺度效應(yīng)作用下的壓裂液滲吸提高采收率機(jī)理,國家自然科學(xué)基金面上項(xiàng)目,,2023-2026,。
[2] 微支撐劑在粗糙微縫內(nèi)的運(yùn)移與支撐規(guī)律研究,國家能源頁巖油研發(fā)中心開放基金項(xiàng)目,,2020-2021,。
[3] 納米乳液壓裂液提高 致密油藏采收率的機(jī)理探索,,中國石油科技創(chuàng)新基金項(xiàng)目,2018-2020,。
[4] 致密油儲(chǔ)層的水鎖 機(jī)理與表面活性劑體系輔助返排的優(yōu)選研究,,校青年拔尖人才科研啟動(dòng)基金項(xiàng)目,2017-2020,。
期刊文章:
【第一作者】
[1] Liang, T., Zhao, X., Yuan, S., Zhu, J., Liang, X., Li, X., Zhou, F., 2021. Surfactant-EOR in Tight Oil Reservoirs: Current Status and a Systematic Surfactant Screening Method with Field Experiments. J. Pet. Sci. Eng. 196. https://doi.org/10.1016/j.petrol.2020.108097
[2] Liang, T., Wei, D., Zhou, F., Li, X., Yuan, L., Wang, B., Lu, J., 2020. Field Experiments on Multi-Stage Chemical Diversion in Low-Permeability HPHT Reservoirs. J. Pet. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106738
[3] Liang, T., Xu, K., Lu, J., Nguyen, Q., DiCarlo, D., 2020. Evaluating the Performance of Surfactants in Enhancing Flowback and Permeability after Hydraulic Fracturing through a Microfluidic Model. SPE J. 25, 268–287. https://doi.org/10.2118/199346-PA
[4] Liang, T., Li, Q., Liang, X., Yao, E., Wang, Y., Li, Y., Chen, M., Zhou, F., Lu, J., 2018. Evaluation of Liquid Nanofluid as Fracturing Fluid Additive on Enhanced Oil Recovery from Low-Permeability Reservoirs. J. Pet. Sci. Eng. 168, 390–399. https://doi.org/10.1016/j.petrol.2018.04.073
[5] Liang, T., Luo, X., Nguyen, Q., DiCarlo, D.A., 2018. Computed-Tomography Measurements of Water Block in Low-Permeability Rocks: Scaling and Remedying Production Impairment. SPE J. 23, 762–771. https://doi.org/10.2118/189445-PA
[6] Liang, T., Shao, L., Yao, E., Zuo, J., Liu, X., Zhang, B., Zhou, F., 2018. Study on Fluid-Rock Interaction and Reuse of Flowback Fluid for Gel Fracturing in Desert Area. Geofluids. https://doi.org/10.1155/2018/8948961
[7] Liang, T., Zhou, F., Shi, Y., Liu, X., Wang, R., Li, B., Li, X., 2018. Evaluation and Optimization of Degradable-Fiber-Assisted Slurry for Fracturing Thick and Tight Formation with High Stress. J. Pet. Sci. Eng. 165, 81–89. https://doi.org/10.1016/j.petrol.2018.02.010
[8] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2017. Flow Physics of How Surfactants Can Reduce Water Blocking Caused by Hydraulic Fracturing in Low Permeability Reservoirs. J. Pet. Sci. Eng. 157, 631–642. https://doi.org/10.1016/j.petrol.2017.07.042
[9] Liang, T., Gu, F., Yao, E., Zhang, L., Yang, K., Liu, G., Zhou, F., 2017. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs. Geofluids. https://doi.org/10.1155/2017/9350967
[10] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2017. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-Ins and Surfactant Additives. SPE J. 22, 1,011-1,023. https://doi.org/10.2118/175101-PA
[11] Liang, T., Yang, Z., Zhou, F., Liu, Z., Qu, H., Yang, K., Sun, J., 2017. A New Approach to Predict Field-Scale Performance of Friction Reducer Based on Laboratory Measurements. J. Pet. Sci. Eng. 159, 927–933. https://doi.org/10.1016/j.petrol.2017.09.076
[12] Liang, T., Zhou, F., Lu, J., DiCarlo, D., Nguyen, Q., 2017. Evaluation of Wettability Alteration and IFT Reduction on Mitigating Water Blocking for Low-Permeability Oil-Wet Rocks after Hydraulic Fracturing. Fuel 209, 650–660. https://doi.org/10.1016/j.fuel.2017.08.029
[13] 梁天博, 蘇航, 昝晶鴿, 等. 變黏滑溜水性能評價(jià)及吉木薩爾頁巖油藏礦場應(yīng)用. 石油科學(xué)通報(bào), 2022, 02: 185-195
[14] 梁天博, 馬實(shí)英, 魏東亞, 等. 低滲透油藏水鎖機(jī)理與助排表面活性劑的優(yōu)選原則. 石油學(xué)報(bào), 2020, 41(06): 745-752.
[15] 梁天博, 梁星原, 王洪達(dá), 等. 致密氣藏中防水鎖劑的篩選方法及其微觀機(jī)理. 科學(xué)技術(shù)與工程, 2020, 20(28): 11568-11573.
【非一作篩選】
[1] Su, H., Zhou, F., Wang, Q., Yu, F., Dong, R., Xiong, C., Li, J., Liang, T., 2021. Flow Physics of Polymer Nanospheres and Diluted Microemulsion in Fractured Carbonate Reservoirs: An Investigation into Enhanced Oil Recovery Mechanisms. SPE J. 26, 2231–2244. https://doi.org/10.2118/205381-PA
[2] Wang, B., Zhou, F., Yang, C., Wang, D., Yang, K., Liang, T., 2020. Experimental Study on Injection Pressure Response and Fracture Geometry during Temporary Plugging and Diverting Fracturing. SPE J. 25, 573–586. https://doi.org/10.2118/199893-PA
[3] Zhou, F., Su, H., Liang, X., Meng, L., Yuan, L., Li, X., Liang, T., 2019. Integrated Hydraulic Fracturing Techniques to Enhance Oil Recovery from Tight Rocks. Pet. Explor. Dev. 46, 1065–1072. https://doi.org/10.1016/S1876-3804(19)60263-6
[4] Xu, K., Liang, T., Zhu, P., Qi, P., Lu, J., Huh, C., Balhoff, M., 2017. A 2.5-D Glass Micromodel for Investigation of Multi-Phase Flow in Porous Media. Lab. Chip 17, 640–646. https://doi.org/10.1039/c6lc01476c
[5] Longoria, R.A., Liang, T., Huynh, U.T., Nguyen, Q.P., DiCarlo, D.A., 2017. Water Blocks in Tight Formations: The Role of Matrix/Fracture Interaction in Hydrocarbon-Permeability Reduction and Its Implications in the Use of Enhanced Oil Recovery Techniques. SPE J. 22, 1,393-1,401. https://doi.org/10.2118/185962-PA
【博士論文】
Water Block from Hydraulic Fracturing in Low Permeability Rocks: Experimental Studies on Causes and Potential Mitigation Methods. The University of Texas at Austin, 2016.
下載地址:https://repositories.lib.utexas.edu/handle/2152/45848
部分SPE會(huì)議文章:
[1] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2016. Identifying and Evaluating Surfactant Additives to Reduce Water Blocks after Hydraulic Fracturing for Low Permeability Reservoirs. Presented at the SPE Improved Oil Recovery Conference, Society of Petroleum Engineers. https://doi.org/10.2118/179601-MS
[2] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2015. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-ins and Surfactant Additives. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. https://doi.org/10.2118/175101-MS
[3] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., Huynh, U.T., 2015. The Applicability of Surfactants on Enhancing the Productivity in Tight Formations. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154284
[4] Liang, X., Zhou, F., Liang, T., Wang, R., Su, H., Wang, X., 2020. Application of Liquid Nanofluid during Hydraulic Fracturing in Tight Reservoirs. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2899
[5] Zhao, X., Liang, T., Zhou, F., Yuan, S., Liang, X., 2020. Adsorption and Dispersion of Diluted Microemulsions in Tight Rocks. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2101
[6] Yuan, S., Liang, T., Zhou, F., Liang, X., Yu, F., Li, J., 2019. A Microfluidic Study of Wettability Alteration Rate on Enhanced Oil Recovery in Oil-Wet Porous Media. Presented at the Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers. https://doi.org/10.2118/197715-MS
[7] Longoria, R.A, Liang, T., Nguyen, Q.P., DiCarlo, D.A., 2015. When Less Flowback Is More: A Mechanism of Permeability Damage and its Implications on the Application of EOR Techniques. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154266
授權(quán)發(fā)明專利(第一發(fā)明人):
[1] 一種基于儲(chǔ)層暫堵的施工方法及裝置(CN202011155131.9)
[2] 一種基于分流模型與CT掃描的相對滲透率測定系統(tǒng)及方法(CN202110560922.8)
[3] 粗糙水力裂縫內(nèi)支撐劑參數(shù)的確定方法,、裝置和設(shè)備(202010601935.0)
[4] 一種碳酸鹽巖儲(chǔ)層微觀模型及其制備方法和應(yīng)用(CN202011517063.6)
[5] 一種支撐劑沉降速率測量裝置(CN202110381563.X)
[6] 一種低滲透巖石的相對滲透率測定系統(tǒng)及方法(CN202110550003.2)
[7] 一種模擬致密油藏微觀模型制作方法(ZL201810839747.4)
[8] 一種致密儲(chǔ)層均勻改造方法及系統(tǒng)(ZL201910661211.2)
[9] 一種基于極限限流設(shè)計(jì)的壓裂方法及系統(tǒng)(ZL201910661839.2)