宋兆杰
研究員,博導(dǎo)、碩導(dǎo),國(guó)家級(jí)高層次青年人才,副院長(zhǎng)
辦公室:主樓A座A302
辦公室電話:010-89739187
E-mail:[email protected]
個(gè)人簡(jiǎn)介
宋兆杰,男,博士,研究員,博導(dǎo)、碩導(dǎo),學(xué)校優(yōu)秀青年學(xué)者和青年人才“本熹班”首期學(xué)員(導(dǎo)師:李根生院士),非常規(guī)油氣科學(xué)技術(shù)研究院副院長(zhǎng)。2014年獲得中國(guó)地質(zhì)大學(xué)(北京)油氣田開發(fā)工程專業(yè)博士學(xué)位。2012-2014年于美國(guó)密蘇里科技大學(xué)進(jìn)行交流訪問。主要研究方向包括:非常規(guī)油氣相態(tài)與提高采收率、CO2驅(qū)油與地質(zhì)封存(CCUS)、多孔介質(zhì)多相流體流動(dòng)規(guī)律等。主持國(guó)家級(jí)、省部級(jí)項(xiàng)目8項(xiàng),其中國(guó)家自然科學(xué)基金項(xiàng)目3項(xiàng)、國(guó)家高端外國(guó)專家引進(jìn)計(jì)劃項(xiàng)目1項(xiàng)、國(guó)家重點(diǎn)研發(fā)計(jì)劃專題1項(xiàng);在Chemical Engineering Journal、Fuel、Journal of Petroleum Science and Engineering、Petroleum Science、石油勘探與開發(fā)和石油學(xué)報(bào)等高水平期刊及SPE IOR和URTeC等行業(yè)頂級(jí)會(huì)議共發(fā)表論文80余篇,其中以第1或通訊作者發(fā)表SCI/EI收錄論文40篇(JCR一區(qū)17篇);獲授權(quán)發(fā)明專利19件;榮獲教育部科技進(jìn)步一等獎(jiǎng)等省部級(jí)科技獎(jiǎng)勵(lì)7項(xiàng)(兩項(xiàng)排名第1)和孫越崎青年科技獎(jiǎng)、中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)青年科技突出貢獻(xiàn)獎(jiǎng)和全國(guó)綠色礦山突出貢獻(xiàn)個(gè)人獎(jiǎng)。現(xiàn)為石油工程教育部重點(diǎn)實(shí)驗(yàn)室副主任、北京能源與環(huán)境學(xué)會(huì)專家委員會(huì)副主任、國(guó)家領(lǐng)軍期刊Petroleum Science副主編、Geofluids編委、《石油科學(xué)通報(bào)》執(zhí)行編委等。
研究方向
[1] 非常規(guī)油氣相態(tài)與提高采收率
[2] 二氧化碳驅(qū)油與地質(zhì)封存(CCUS)
[3] 多孔介質(zhì)多相流體流動(dòng)規(guī)律
教育背景
2010.09-2014.07,中國(guó)地質(zhì)大學(xué)(北京),博士研究生
2012.09-2014.04,美國(guó)密蘇里科技大學(xué),聯(lián)合培養(yǎng)博士生
2007.09-2010.07,中國(guó)石油大學(xué)(北京),碩士研究生
2003.09-2007.07,中國(guó)石油大學(xué)(華東),大學(xué)本科
工作經(jīng)歷
2021.07-,中國(guó)石油大學(xué)(北京),研究員
2021.08-2024.07,中國(guó)石油大學(xué)(北京),學(xué)校優(yōu)秀青年學(xué)者
2016.06-2021.07,中國(guó)石油大學(xué)(北京),副研究員
2015.08-2018.07,中國(guó)石油大學(xué)(北京),學(xué)校青年拔尖人才
2014.07-2016.06,中國(guó)石油大學(xué)(北京),助理研究員
榮獲獎(jiǎng)勵(lì)
[1] 2020.12,中國(guó)石油和化工自動(dòng)化行業(yè)科技進(jìn)步一等獎(jiǎng)(排名第1)
[2] 2022.12,中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)科技進(jìn)步二等獎(jiǎng)(排名第1)
[3] 2023.09,孫越崎能源科學(xué)技術(shù)獎(jiǎng)青年科技獎(jiǎng)
[4] 2022.12,中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)青年科技突出貢獻(xiàn)獎(jiǎng)
[5] 2023.04,中關(guān)村綠色礦山產(chǎn)業(yè)聯(lián)盟綠色礦山突出貢獻(xiàn)個(gè)人獎(jiǎng)
[6] 2023.06,教育部高等學(xué)校科學(xué)研究?jī)?yōu)秀成果獎(jiǎng)科技進(jìn)步一等獎(jiǎng)(排名第10)
[7] 2015.10,中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)科技進(jìn)步一等獎(jiǎng)(排名第9)
[8] 2023.05,青島市科技進(jìn)步二等獎(jiǎng)(排名第5)
[9] 2023.02,中國(guó)石油和化工自動(dòng)化行業(yè)科技創(chuàng)新團(tuán)隊(duì)獎(jiǎng)(排名第13)
[10] 2022.07,Petroleum Science期刊2021-2022年度優(yōu)秀青年編委
[11] 2020.12,Petroleum Science期刊2020年度優(yōu)秀青年編委
[12] 2014.10,領(lǐng)跑者5000——中國(guó)精品科技期刊頂尖學(xué)術(shù)論文(F5000)
[13] 2014.06,中國(guó)地質(zhì)大學(xué)(北京)優(yōu)秀博士學(xué)位論文
科研項(xiàng)目
[19] 2023.01-2024.12,頁巖油藏復(fù)雜縫網(wǎng)注CO2液流控制提高采收率理論與技術(shù)研究(G2023122005L),國(guó)家高端外國(guó)專家引進(jìn)計(jì)劃項(xiàng)目,主持
[18] 2022.09-2025.03,古龍頁巖油立體井網(wǎng)注CO2/烴類氣提高采收率機(jī)理及參數(shù)優(yōu)化研究(DQYT-2022-JS-761-02),黑龍江省“揭榜掛帥”科技攻關(guān)項(xiàng)目課題,主持
[17] 2021.01-2024.12,頁巖油儲(chǔ)層納微米孔喉中油-CO2-水多元體系相行為與流動(dòng)機(jī)制研究(52074319),國(guó)家自然科學(xué)基金面上項(xiàng)目,主持
[16] 2020.01-2024.12,頁巖油儲(chǔ)層改造與提采一體化機(jī)理與技術(shù)(ZLZX2020-01-08),中石油戰(zhàn)略合作科技專項(xiàng)課題,主持
[15] 2020.01-2023.12,深層碳酸鹽巖酸性氣藏?cái)?shù)值模擬與注氣控水技術(shù)(U19B6003-02-05-02),國(guó)家自然科學(xué)基金聯(lián)合基金項(xiàng)目,主持
[14] 2019.11-2021.11,不同類型巖石孔隙結(jié)構(gòu)表征方法研究(33550000-19-ZC0607-0019),中國(guó)石化石油勘探開發(fā)研究院技術(shù)服務(wù)項(xiàng)目,主持
[13] 2018.12-2019.10,巴西Libra碳酸鹽巖油藏富CO2混相驅(qū)氣竄規(guī)律研究(RIPED-2018-JS-688),中國(guó)石油勘探開發(fā)研究院技術(shù)服務(wù)項(xiàng)目,主持
[12] 2018.05-2021.04,低滲透油藏CO2驅(qū)油與封存協(xié)同方案設(shè)計(jì)及跟蹤評(píng)價(jià)研究(2018YFB060550501),國(guó)家重點(diǎn)研發(fā)計(jì)劃專題,主持
[11] 2016.01-2018.12,縫洞型碳酸鹽巖油藏多相流體流動(dòng)規(guī)律與剩余油形成機(jī)理研究(51504268),國(guó)家自然科學(xué)基金青年科學(xué)基金,主持
[10] 2015.10-2017.09,壓裂液中減阻劑與致密砂巖的相互作用及其對(duì)油水滲透率的影響(2015D-5006-0209),中國(guó)石油科技創(chuàng)新基金,主持
[9] 2015.08-2018.07,縫洞型碳酸鹽巖油藏提高采收率技術(shù)研究(2462014YJRC053),中國(guó)石油大學(xué)(北京)拔尖人才科研啟動(dòng)基金,主持
[8] 2015.01-2017.12,縫洞型碳酸鹽巖油藏注水竄逸規(guī)律研究(2462015YQ1105),中國(guó)石油大學(xué)(北京)優(yōu)秀青年教師研究項(xiàng)目,主持
[7] 2017.01-2020.12,低滲-致密油藏高效提高采收率新技術(shù)(2017ZX05009-004),國(guó)家科技重大專項(xiàng)課題,科研骨干
[6] 2016.01-2020.12,縫洞型油藏泡沫輔助氣驅(qū)提高采收率技術(shù)研究(2016ZX05014-004-004),國(guó)家科技重大專項(xiàng)專題,技術(shù)首席
[5] 2016.07-2017.06,長(zhǎng)慶油田CO2驅(qū)氣竄規(guī)律分析與工藝對(duì)策研究(16CY2-FW-003),中國(guó)石油長(zhǎng)慶油田技術(shù)服務(wù)項(xiàng)目,科研骨干
[4] 2014.07-2016.09,CO2埋存與提高采收率評(píng)價(jià)研究(2012BAC26B02),國(guó)家科技支撐計(jì)劃項(xiàng)目,科研骨干
[3] 2014.07-2015.01,扶余油田優(yōu)勢(shì)通道微觀形態(tài)及形成機(jī)理研究(JS13-W-14-JZ-26-47),中國(guó)石油吉林油田技術(shù)服務(wù)項(xiàng)目,科研骨干
[2] 2013.01-2014.04,Effect of Polymer/Polymer Gel on Disproportionate Permeability Reduction to Gas and Water for Tight Gas,美國(guó)化學(xué)會(huì)石油研究基金,科研骨干
[1] 2010.09-2014.07,CO2驅(qū)油與埋存潛力評(píng)價(jià)及戰(zhàn)略規(guī)劃(2011ZX05016-006),國(guó)家科技重大專項(xiàng)課題,科研骨干
代表性論文(第一作者/通訊作者)
期刊論文
[37] 大慶古龍頁巖油-CO2高壓相態(tài)及傳質(zhì)規(guī)律研究,石油學(xué)報(bào),2023.
[36] Similarity-based laboratory study of CO2 huff-n-puff in tight conglomerate cores, Petroleum Science, 2023.
[35] 吉木薩爾頁巖油二氧化碳吞吐提高采收率技術(shù)研究,特種油氣藏,2023.
[34] Adsorption behavior of n-hexane and its mixtures with CO2, CH4, H2O and SDBS in hydrophobic silica nanopores, Fuel, 2022.
[33] Pore Scale Performance Evaluation and Impact Factors in Nitrogen Huff-n-Puff EOR for Tight Oil, Petroleum Science, 2022.
[32] N2 and CO2 Huff-n-Puff for Enhanced Tight Oil Recovery: An Experimental Study Using Nuclear Magnetic Resonance, Energy & Fuels, 2022.
[31] Phase Behavior of CO2-CH4-Water Mixtures in Shale Nanopores Considering Fluid Adsorption and Capillary Pressure, Industrial & Engineering Chemistry Research, 2022.
[30] Effect of confinement on the three-phase equilibrium of water-oil-CO2 mixtures in nanopores, Petroleum Science, 2022.
[29] The viscosifying behavior of W/O emulsion and its underlying mechanisms: Considering the interfacial adsorption of heavy components, Colloids and Surfaces A, 2022.
[28] Water-based nanofluid-alternating-CO2 injection for enhancing heavy oil recovery: Considering oil-nanofluid emulsification, Journal of Petroleum Science and Engineering, 2021.
[27] Phase Behavior and Miscibility of CO2-Hydrocarbon Mixtures in Shale Nanopores, Industrial & Engineering Chemistry Research, 2021.
[26] Effect of Nanopore Confinement on Fluid Phase Behavior and Production Performance in Shale Oil Reservoir, Industrial & Engineering Chemistry Research, 2021.
[25] Wettability effects on phase behavior and interfacial tension in shale nanopores, Fuel, 2021.
[24] 深水濁積巖油藏提高采收率方法研究——以安哥拉X油藏為例,石油鉆探技術(shù),2021.
[23] Adsorption induced critical shifts of confined fluids in shale nanopores, Chemical Engineering Journal, 2020.
[22] A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China, Fuel, 2020.
[21] Phase Behavior of Hydrocarbon Mixture in Shale Nanopores Considering the Effect of Adsorption and Its Induced Critical Shifts, Industrial & Engineering Chemistry Research, 2020.
[20] Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system, Petroleum Science, 2020.
[19] 納米顆粒在巖石表面吸附—脫附規(guī)律研究,石油科學(xué)通報(bào),2020.
[18] Effect of vug filling on oil-displacement efficiency in carbonate fractured-vuggy reservoir by natural bottom-water drive: A conceptual model experiment, Journal of Petroleum Science and Engineering, 2019.
[17] 致密儲(chǔ)集層壓裂液與致密砂巖相互作用研究,地質(zhì)與勘探,2019.
[16] Experimental study on disproportionate permeability reduction caused by non-recovered fracturing fluids in tight oil reservoirs, Fuel, 2018.
[15] Preformed particle gel propagation and dehydration through semi-transparent fractures and their effect on water flow, Journal of Petroleum Science and Engineering, 2018.
[14] Conformance control for CO2-EOR in naturally fractured low permeability oil reservoirs, Journal of Petroleum Science and Engineering, 2018.
[13] Using screen models to evaluate the injection characteristics of particle gels for water control, Energy & Fuels, 2018.
[12] 縫洞型油藏裂縫內(nèi)油水兩相流動(dòng)特征研究,西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2018.
[11] 稠油油藏注超臨界二氧化碳驅(qū)油影響因素分析,地質(zhì)與勘探,2017.
[10] 輕質(zhì)油藏注空氣提高采收率技術(shù)適應(yīng)性探討,中國(guó)礦業(yè),2016.
[9] Effect of polymer on disproportionate permeability reduction to gas and water for fractured shales, Fuel, 2015.
[8] Effect of polymer on gas flow behavior in microfractures of unconventional gas reservoirs, Journal of Natural Gas Science and Engineering, 2015.
[7] 考慮縱向非均質(zhì)性的底水氣藏臨界產(chǎn)量計(jì)算方法,科學(xué)技術(shù)與工程,2015.
[6] D-optimal design for Rapid Assessment Model of CO2 flooding in high water cut oil reservoirs, Journal of Natural Gas Science and Engineering, 2014.
[5] Sensitivity analysis of water-alternating-CO2 flooding for enhanced oil recovery in high water cut oil reservoirs, Computers & Fluids, 2014.
[4] Derivation of water flooding characteristic curve for high water-cut oilfields, Petroleum Exploration and Development, 2013.
[3] 高含水期油田水驅(qū)特征曲線關(guān)系式的理論推導(dǎo),石油勘探與開發(fā),2013.
[2] 水驅(qū)油藏轉(zhuǎn)注CO2驅(qū)油參數(shù)優(yōu)化與效果評(píng)價(jià),西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2012.
[1] 考慮非達(dá)西滲流的底水錐進(jìn)臨界產(chǎn)量計(jì)算模型,石油學(xué)報(bào),2012.
會(huì)議論文或報(bào)告
[23] 古龍頁巖油注CO2相變滲流與提高采收率機(jī)理,第六屆油氣地質(zhì)工程一體化論壇
[22] 考慮壓裂竄擾的頁巖油藏孔隙-裂縫介質(zhì)油水兩相流動(dòng)機(jī)理,第六屆油氣地質(zhì)工程一體化論壇
[21] 頁巖油藏井間壓裂干擾實(shí)例分析及防治對(duì)策研究,第六屆油氣地質(zhì)工程一體化論壇
[20] Effect of CO2 Dissolution on Fluid Flow and Phase Behavior in Oil- Water Systems in Shale Reservoirs, URTeC 3860690 presented at SPE/AAPG/SEG Unconventional Resources Technology Conference, 2023.
[19] The application of focused ion beam scanning electron microscope (FIB-SEM) to the nanometer-sized pores in shales, presented at InterPore 2023, 2023.
[18] 頁巖油儲(chǔ)層提高采收率機(jī)理與方法探討, 第五屆提高采收率國(guó)際會(huì)議(特邀報(bào)告/分會(huì)主持人),2021.
[17] 頁巖油儲(chǔ)層提高采收率機(jī)理與技術(shù)探討,第五屆全國(guó)油氣藏提高采收率技術(shù)研討會(huì)(特邀報(bào)告/分會(huì)主持人),2021.
[16] Adsorption Behavior of Shale Oil in Slit Pores and Its Underlying Mechanisms: Insights from Molecular Dynamic Simulation, presented at 2020 AIChE Annual Meeting, 2020.
[15] Phase behavior and minimum miscibility pressure of confined fluids in organic nanopores, SPE 200449 presented at SPE Improved Oil Recovery Conference, 2020.
[14] Confinement Effect on the Fluid Phase Behavior and Flow in Shale Oil Reservoirs, URTeC 3135 presented at SPE/AAPG/SEG Unconventional Resources Technology Conference, 2020.
[13] 頁巖納米孔內(nèi)烴類流體相行為研究,第四屆全國(guó)油氣藏提高采收率技術(shù)研討會(huì)(特邀報(bào)告/分會(huì)主持人),2020.
[12] Phase equilibria of confined fluids in nanopores of shale rocks from an adsorption-dependent equation of state, presented at 2019 AIChE Annual Meeting, 2019.
[11] A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China, SPE 196548 presented at SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, 2019.
[10] Modifying peng-robinson equation of state to consider influence of confinement on fluid phase behavior, presented at Carbon Management Technology Conference, 2019.
[9] Experimental modeling of gas channeling for water-alternating-gas flooding in high-temperature and high-pressure reservoirs, presented at Carbon Management Technology Conference, 2019.
[8] Effect of water-alternating-gas injection on gas and water production control in carbonate reservoirs, presented at Carbon Management Technology Conference, 2019.
[7] Recognition on gas channeling characteristics during CO2 flooding in low permeability reservoirs, presented at 2nd International Symposium on Oilfield Chemistry (Invited Speaker/Session Host), 2018.
[6] 低滲透油藏二氧化碳驅(qū)油氣竄規(guī)律與防治措施研究,第二屆全國(guó)油氣藏提高采收率技術(shù)研討會(huì)(特邀報(bào)告/大會(huì)主持人),2018.
[5] Fracturing fluid retention and its effect on fluid flow in microfractures of tight oil reservoirs, presented at 2017 AIChE Annual Meeting, 2017.
[4] Nitrogen gas flooding for naturally fractured carbonate reservoir: Visualisation experiment and numerical simulation, SPE 182479 presented at SPE Asia Pacific Oil & Gas Conference and Exhibition, 2016.
[3] Mechanism and applications of high-pressure air injection in light oil reservoirs, Presented at 2016 International Conference on New Energy and Sustainable Development, 2016.
[2] D-optimal design for Rapid Assessment Model of CO2 flooding in high water cut oilfields, Presented at 2014 International Conference on Enhanced Oil Recovery, 2014.
[1] 考慮縱向非均質(zhì)性的底水氣藏臨界產(chǎn)量計(jì)算方法,第八屆北京石油青年學(xué)術(shù)年會(huì),2010.
專利
[19] 邊底水侵模擬裝置、方法、存儲(chǔ)介質(zhì)及產(chǎn)品,ZL202110839749.5
[18] 一種小分子稠油降粘聚合物及其制備方法,ZL202011367550.9
[17] 一種致密砂巖滲吸效果評(píng)價(jià)方法及裝置,ZL202010082639.4
[16] 油氣最小混相壓力確定方法及裝置,ZL202010105946.X
[15] 一種確定頁巖孔徑分布的方法、裝置、設(shè)備及系統(tǒng),ZL202010289460.6
[14] 巖心夾持器,ZL201910967950.4
[13] 一種注氣驅(qū)油實(shí)驗(yàn)流體的確定方法及裝置,ZL201910879964.0
[12] CO2驅(qū)油技術(shù)效果的評(píng)價(jià)方法及裝置,ZL201811043315.9
[11] 縫洞型碳酸鹽巖油藏縫洞分布圖的建立方法及模型和應(yīng)用,ZL201810520795.7
[10] 一種微分散凝膠強(qiáng)化泡沫體系及評(píng)價(jià)方法,ZL201710992894.0
[9] 模擬致密油藏裂縫內(nèi)流體流動(dòng)的可視化模型及制備和應(yīng)用,ZL 201711005687.8
[8] 一種泡沫綜合性能評(píng)價(jià)方法,ZL201710991873.7
[7] 一種水驅(qū)油田優(yōu)勢(shì)通道形成機(jī)理及發(fā)育情況的分析方法,ZL201510084039.0
[6] 縫洞型油藏三維可視化模型及其制作方法,ZL201511006046.5
[5] 模擬縫洞型碳酸鹽巖油藏注氣的可視化實(shí)驗(yàn)裝置及方法,ZL201510724935.9
[4] 一種表征縫洞型油藏水驅(qū)開采效果的方法,ZL201510440959.1
[3] 縫洞型碳酸鹽巖油藏物理模型、驅(qū)替模擬實(shí)驗(yàn)裝置及系統(tǒng),ZL201510712835.4
[2] 一種分級(jí)控制流度的CO2驅(qū)油藏開采方法,ZL201510309517.3
[1] 用于低滲透砂巖油藏的驅(qū)油實(shí)驗(yàn)裝置及方法,ZL201510236158.3
學(xué)術(shù)兼職
[1] 石油工程教育部重點(diǎn)實(shí)驗(yàn)室副主任
[2] 北京能源與環(huán)境學(xué)會(huì)專家委員會(huì)副主任
[3] 國(guó)家領(lǐng)軍期刊Petroleum Science副主編
[4] Geofluids期刊編委/學(xué)術(shù)編輯
[5] Energies期刊“New Insights into Enhanced Oil Recovery”專刊客座編輯
[6] 《石油科學(xué)通報(bào)》執(zhí)行編委
[7] 2021/2022/2023 Unconventional Resources Technology Conference評(píng)委
[8] SPE J,Fuel,Energy & Fuels,Journal of Petroleum Science and Engineering,Journal of Natural Gas Science and Engineering,Petroleum Science,Energy Reports,European Physical Journal Plus,Journal of Unconventional Oil and Gas Resources,International Journal of Oil, Gas and Coal Technology,石油勘探與開發(fā)等學(xué)術(shù)期刊審稿人