賈趵,,中國(guó)石油大學(xué)(北京)副研究員、博士生導(dǎo)師,,2020年入選學(xué)校優(yōu)秀青年學(xué)者培育計(jì)劃,。2018年畢業(yè)于美國(guó)堪薩斯大學(xué)(University of Kansas),,化學(xué)與石油工程專(zhuān)業(yè),,獲Frank Bowdish Outstanding Ph.D. Award,。曾于美國(guó)北達(dá)科他大學(xué)(University of North Dakota)石油工程系擔(dān)任助理教授,、博士生導(dǎo)師,;于美國(guó)環(huán)境與能源研究中心(Energy & Environmental Research Center)擔(dān)任二級(jí)油藏工程師,主持/參與美國(guó)能源部與州政府非常規(guī)油氣田開(kāi)發(fā)相關(guān)項(xiàng)目多項(xiàng),。研究方向?yàn)榉浅R?guī)油氣田開(kāi)發(fā)與提高采收率,包括多孔介質(zhì)滲流理論,、地質(zhì)工程一體化立體開(kāi)發(fā)理論,、超低滲流體相態(tài)與流動(dòng)實(shí)驗(yàn)和模擬、二氧化碳提高采收率與碳埋存等,,曾受聘擔(dān)任美國(guó)德州大學(xué)奧斯汀分校(The University of Texas at Austin)石油與地質(zhì)系統(tǒng)工程系提高采收率實(shí)驗(yàn)室主管,。以第一作者身份在SPE Journal、 SPE Reservoir Evaluation & Engineering等期刊發(fā)表論文20余篇,,SPE等會(huì)議論文10余篇,;擔(dān)任多個(gè)SCI期刊青年編委,、客座編輯和審稿人工作。
郵箱:baojia90@cup.edu.cn; baojia90@gmail.com
谷歌學(xué)術(shù)主頁(yè):https://scholar.google.com/citations?user=1yKiWgsAAAAJ&hl=en
【招生專(zhuān)業(yè)】:
& 學(xué)術(shù)型碩士:石油與天然氣工程082000
& 專(zhuān)業(yè)型碩士:石油與天然氣工程085706
& 學(xué)術(shù)博士:石油與天然氣工程082000
& 工程博士:資源與環(huán)境085706
【教育背景】:
& 2014-08至2018-12 University of Kansas(美國(guó)) 博士
& 2012-06至2014-08 New Mexico Institute of Mining and Technology(美國(guó)) 石油與天然氣工程 碩士
& 2008-08至2012-06 中國(guó)石油大學(xué)(華東) 油氣儲(chǔ)運(yùn)工程 學(xué)士
【研究方向】:
& 頁(yè)巖油氣,、致密油氣和油頁(yè)巖高效開(kāi)發(fā)
& 二氧化碳提高采收率與碳埋存
& 地層儲(chǔ)能與地?zé)衢_(kāi)發(fā)
【主要榮譽(yù)和獎(jiǎng)勵(lì)】:
& 全球前2%頂尖科學(xué)家
& 中國(guó)發(fā)明協(xié)會(huì)創(chuàng)新獎(jiǎng)二等獎(jiǎng)
& 中國(guó)石油大學(xué)(北京)優(yōu)秀青年學(xué)者
& SPE Journal杰出審稿人獎(jiǎng)
& Frank Bowdish Outstanding PhD Award
【工作經(jīng)歷】:
& 2021-04至今 中國(guó)石油大學(xué)(北京) 副研究員
& 2020-08至2020-12 北達(dá)科他大學(xué)(University of North Dakota)石油工程系(美國(guó)) 助理教授
& 2019-03至2020-08 能源與環(huán)境研究中心(Energy & Environmental Research Center)(美國(guó)) 油藏工程師
【科研項(xiàng)目】:
[15] 國(guó)家自然科學(xué)基金面上基金,,5247040153,超臨界水原位轉(zhuǎn)化油頁(yè)巖機(jī)理研究,,2025-2028,,48萬(wàn),在研,,主持
[14] 長(zhǎng)慶油田分公司勘探開(kāi)發(fā)研究院,2023年2023-2024年油藏評(píng)價(jià)頁(yè)巖油攻關(guān)試驗(yàn)區(qū)效果評(píng)價(jià),,2023-2024,,53萬(wàn),在研,,參與,、第二負(fù)責(zé)人
[13] 中國(guó)石油天然氣股份有限公司西南油氣田分公司勘探開(kāi)發(fā)研究院,金秋區(qū)塊致密河道砂巖地質(zhì)工程一體化建模及EUR主控因素研究,,2023-2024,,29.7萬(wàn),在研,,主持
[12] 中國(guó)石油天然氣股份有限公司勘探開(kāi)發(fā)研究院,,頁(yè)巖油國(guó)內(nèi)外技術(shù)調(diào)研及分析研究,2023-2024,,34.8萬(wàn),,結(jié)題,主持
[11] 中國(guó)石油化工股份有限公司石油勘探開(kāi)發(fā)研究院,,油頁(yè)巖原位開(kāi)采止水一體化方法及機(jī)理研究,,2022-2024,29.5萬(wàn),,在研,,主持
[10] 大慶油田有限責(zé)任公司和黑龍江省科技廳,古龍頁(yè)巖油提高采收率關(guān)鍵問(wèn)題研究,,2021-2025,,971.805萬(wàn),在研,,參與
[9] 中石油戰(zhàn)略合作科技專(zhuān)項(xiàng)-準(zhǔn)噶爾盆地瑪湖中下組合和吉木薩爾陸相頁(yè)巖油高效勘探開(kāi)發(fā)理論及關(guān)鍵技術(shù)研究,,均衡壓裂與氣驅(qū)/吞吐一體化提產(chǎn)技術(shù)及效果評(píng)估研究,2019-2024,,9310萬(wàn),,在研,,參與、專(zhuān)題負(fù)責(zé)人
[8] 中央高?;究蒲谢?,2462021QNXZ004,頁(yè)巖巖石物理特性的多尺度測(cè)量和模擬,,2021-2024,,60w,在研,,主持
[7] 美國(guó)能源部Department of Energy,,Subtask 3.1 - Bakken Rich Gas Enhanced Oil Recovery,2020-2020,,~$3,000,000,,結(jié)題,參與
[6] 美國(guó)北達(dá)科他州State Energy Research Center (SERC),,Crude Oil Swelling with Injected Produced Gas and CO2 as a Potential Mechanism for Enhanced Oil Recovery (EOR) in the Bakken,,2019-2020,$117,611,,結(jié)題,,主持
[5] 美國(guó)北達(dá)科他州North Dakota Pipeline Authority和North Dakota Industrial Commission,Assessment of Bakken and Three Forks Natural Gas Compositions,,2019-2020,,$300,650,結(jié)題,,參與
[4] 美國(guó)北達(dá)科他州North Dakota Industrial Commission,,Underground Storage of Produced Natural Gas – Conceptual Evaluation and Pilot Project(s),2019-2021,,~$6,000,000,,結(jié)題,參與
[3] 馬拉松石油公司Marathon Petroleum Corporation(美國(guó)),,Evaluation and Quantification of CO2 Sorption in Bakken Shale and Interactions Between C02 and Three Forks Rock and Brine,,2019-2020,$525,000,,結(jié)題,,參與
[2] 切薩皮克能源公司Chesapeake Energy(美國(guó)),Gas Huff and Puff to improve oil recovery in the Eagle Ford,,2016-2018,,~$110,000,結(jié)題,參與
[1] 美國(guó)能源部Department of Energy,,Nanoparticle-Stabilized CO2 Foam for CO2 EOR Application,,2010-2015,$ $1,158,822,,結(jié)題,,參與
【部分一作/通訊期刊論文】:
[23] 超低滲致密砂巖和頁(yè)巖儲(chǔ)層滲流能力瞬態(tài)法評(píng)價(jià)進(jìn)展,石油科學(xué)通報(bào),,2024, 9(4), 659-678.
[22] Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. ACS omega, 2024, 9(7), 7705-7718.
[21] Machine learning and UNet++ based microfracture evaluation from CT images. Geoenergy Science and Engineering, 2023, 226, 211726.
[20] Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm. Computational Geosciences, 2023, 27(4), 537-549.
[19] Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energy & Fuels, 2022, 36(21), 12917-12945.
[18] Mechanistic Understanding of Delayed Oil Breakthrough in Near-Critical Point Shale Oil Reservoirs. In SPE Eastern Regional Meeting (p. D031S005R003). 2022. SPE.
[17] Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petroleum Science, 2022, 19(4), 1757-1765. (高被引論文)
[16] Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 2021, 208, 109659.
[15] Pore pressure dependent gas flow in tight porous media. Journal of Petroleum Science and Engineering, 2021, 205, 108835.
[14] Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks. Journal of Natural Gas Science and Engineering, 2021, 91, 103756.
[13] Intelligent materials in unconventional oil and gas recovery. In Sustainable Materials for Oil and Gas Applications (pp. 175-206). 2020, Gulf Professional Publishing.
[12] An integrated approach of measuring permeability of naturally fractured shale. Journal of Petroleum Science and Engineering, 2020, 186, 106716.
[11] Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 82-93.
[10] Revisiting approximate analytical solutions of estimating low permeability using the gas transient transmission test. Journal of Natural Gas Science and Engineering, 2019, 72, 103027.
[9] Investigation of shale-gas-production behavior: evaluation of the effects of multiple physics on the matrix. SPE Reservoir Evaluation & Engineering, 2019, 23(01), 068-080.
[8] Measurement of CO2 diffusion coefficient in the oil-saturated porous media. Journal of Petroleum Science and Engineering, 2019, 181, 106189.
[7] Multiphysical flow behavior in shale and permeability measurement by pulse-decay method. In Petrophysical characterization and fluids transport in unconventional reservoirs (pp. 301-324). 2019, Elsevier.
[6] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236, 404-427. (高被引,、熱點(diǎn)論文)
[5] Insights into the Gas Transmission Test at Multiscale Based on Discrete-Fracture Model and History Matching. In SPE Eastern Regional Meeting (p. D033S004R005). 2018. SPE.
[4] Experimental and numerical investigations of permeability in heterogeneous fractured tight porous media. Journal of Natural Gas Science and Engineering, 2019, 58, 216-233.
[3] Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. Journal of Petroleum Science and Engineering, 164, 31-42.
[2] A workflow to estimate shale gas permeability variations during the production process. Fuel, 220, 879-889.
[1] Different flow behaviors of low-pressure and high-pressure carbon dioxide in shales. SPE Journal, 23(04), 1452-1468.