張霖宙,1987年生,,福建省惠安縣人,,教授,博士生導師,,國家自然科學基金優(yōu)秀青年科學基金獲得者,。主要研究興趣為智能復(fù)雜能源化工技術(shù)開發(fā),通過復(fù)雜分子能源轉(zhuǎn)化體系(如石油,、煤及生物質(zhì)等)的過程感知及轉(zhuǎn)化規(guī)律研究,,開發(fā)分子層次過程精準模擬及優(yōu)化建模工具,為流程行業(yè)建立分子級數(shù)字孿生及智能優(yōu)化系統(tǒng),。
近年來以第一/通訊作者發(fā)表論文50余篇,包括化工頂級刊物AIChE Journal及Chemical Engineering Science,,出版中文學術(shù)專著1本,授權(quán)發(fā)明專利4項。現(xiàn)任石油學報《(石油加工)》和《石油科學通報》的青年/執(zhí)行編委,。研究成果應(yīng)用于煉油及化工行業(yè),,轉(zhuǎn)讓及實施發(fā)明專利許可3項,獲省部級科技一等獎3項,。講授《化工原理》及《化工數(shù)據(jù)分析處理》課程,,作為指導教師指導學生獲多項國家級及省部級學科競賽獎項,指導學生獲研究生國家獎學金2人,,校優(yōu)秀畢業(yè)論文1人,。
電話:010-89739036 電子郵箱:[email protected]
【研究方向】
能源化工復(fù)雜分子體系過程感知及分子轉(zhuǎn)化機制、能源化工復(fù)雜分子體系模型化方法,、工業(yè)過程模擬軟件及智能優(yōu)化系統(tǒng)構(gòu)建,。
【教育背景】
● 2008-2014 中國石油大學(北京)化學工程與技術(shù) 博士學位(碩博連讀)導師:趙鎖奇 史權(quán)
● 2012-2013 美國University of Delaware能源研究所 聯(lián)合培養(yǎng)博士研究生(國家公派)合作導師:Michael T. Klein
● 2004-2008 中國石油大學(北京)化學工程與工藝 學士學位
【工作經(jīng)歷】
● 2023-至今 中國石油大學(北京)化學工藝系 教授
● 2016-2023 中國石油大學(北京)化學工藝系 副教授
● 2014-2016 中國石油大學(北京)化學工藝系 講師
【個人榮譽】
● 2023年美國化學會能源與燃料領(lǐng)域新星科學家(ACS Energy and Fuels Rising Stars)
● 2023年侯德榜化工科學技術(shù)獎青年獎
● 2022年獲批國家自然科學基金優(yōu)秀青年科學基金
● 2022年中國石油大學(北京)校優(yōu)秀青年學者
● 2022年中國石油大學(北京)校優(yōu)秀教師
● 2015年中國石油大學(北京)校青年拔尖人才
【科研獲獎】
● 2022年中國化工學會基礎(chǔ)研究成果獎一等獎“石油煉化分子管理基礎(chǔ)”
● 2020年中國化工學會基礎(chǔ)研究成果獎一等獎“重油非烴類大分子結(jié)構(gòu)解析及反應(yīng)行為研究”
● 2018年中國石油和化學工業(yè)聯(lián)合會技術(shù)發(fā)明一等獎“大規(guī)模超臨界連續(xù)分離油漿制備高性能針狀焦技術(shù)”
【講授課程】
l 本科生課程《化工原理》
● 研究生課程《化工數(shù)據(jù)分析處理》
【學科競賽】
作為指導教師指導學科競賽,,獲國家級及省部級特等獎/一等獎十余項。代表如下:
● 2023年第六屆全國“互聯(lián)網(wǎng)+化學反應(yīng)工程”課模設(shè)計大賽全國二等獎
● 2022年第十六屆全國大學生化工設(shè)計競賽全國二等獎
● 2021年第四屆全國“互聯(lián)網(wǎng)+化學反應(yīng)工程”課模設(shè)計大賽全國一等獎
● 2021年第三屆北京市大學生節(jié)能節(jié)水低碳減排社會實踐與科技競賽特等獎
● 2021年第十三屆北京市大學生化學實驗競賽一等獎
● 2020年第十三屆全國大學生節(jié)能減排社會實踐與科技競賽全國三等獎
● 2019年第三屆全國大學生化工實驗大賽全國總決賽二等獎
【社會兼職】
● 《石油學報(石油加工)》期刊青年編委
● 《石油科學通報》期刊執(zhí)行編委
【招生及科研條件】
在化工專業(yè)及人工智能專業(yè)招收碩士及博士研究生根據(jù)實際課題安排,,研究生的研究方向主要為:先進儀器分析表征,、化工過程模型軟件開發(fā)、復(fù)雜分子體系智能優(yōu)化系統(tǒng)研發(fā),。課題組依托于重質(zhì)油全國重點實驗室,,實驗室平臺包括多臺高/超高分辨率質(zhì)譜及多臺氣相色譜質(zhì)譜,在國內(nèi)處于領(lǐng)先地位,。課題組經(jīng)過多年研發(fā),,自主開發(fā)了復(fù)雜石油分子模型的軟件平臺,具有多臺計算服務(wù)器,,提供代碼編寫和軟件研發(fā)的全程指導,。課題組的特點在于與工業(yè)界保持了緊密結(jié)合,研究生可參與相關(guān)工業(yè)項目各個環(huán)節(jié),,并可到企業(yè)實地掌握現(xiàn)場一手信息,,許多研究生畢業(yè)后進入石化企業(yè)核心研發(fā)部門。課題組具有完善的科研實驗條件,、科研技術(shù)積累和充足的科研經(jīng)費可用于研究生培養(yǎng),。
【近五年代表性論文】
2023年
1.Zhang, Y.; Zhou, Z.; Zhang, X.; Guan, D.; Wang, Y.; Shi, Q.*; Zhang, L.* Molecular Characterization of Heavy Olefins in Slurry-Phase Hydrocracking Products Using High-Resolution Mass Spectrometry. Energy Fuels 2023, 37 (16), 11743–11753.(美國化學會官方微信公眾號推薦)
2.Yu, H.#; Fang, X.#; Jiang, X.; Wang, L.; Zhang, Y.; Zhang, L.* Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking. Energies 2023, 16 (8), 3448.
3.Wang, Y.; Lu, J.; Zhang, X.; Zhang, X.; Zhang, B.; Wu, J.; Guan, D.; Zhang, Y.; Chen, J.; Feng, X.; Zhang, Y.; Zhou, Z.*; Zhang, L.*; Shi, Q. Molecular Transformation of Heavy Oil during Slurry Phase Hydrocracking Process: A Comparison between Thermal Cracking and Hydrocracking. Fuel 2023, 351, 128981.
4.Guan, D.; Cai, G.; Zhang, L.* Dual‐objective Optimization for Petroleum Molecular Reconstruction Based on Property and Composition Similarities. AIChE Journal 2023, e18108.
5.Cheng, M.; Zhang, L.* Molecular Reconstruction Method Based on NIR Spectroscopy for Reformates. Energies 2023, 16 (7), 2982.
6.Chen, Z.; Wang, Y.; Li, Y.; Wu, J.; Zhang, L.* Explicit Molecule-Based Reaction Network Simplification: Theory and Application on Catalytic Reforming. Chemical Engineering Science 2023, 277, 118833.
7.Chen, Z.; Wang, G.*; Zhao, S.; Zhang, L.* A Molecular Kinetic Model for Heavy Gas Oil Catalytic Pyrolysis to Light Olefins. AIChE Journal 2023, e18116.
8.Chen, Z.#; Lyu, W.#; Wang, R.; Li, Y.; Xu, C.; Jiang, G.*; Zhang, L.* A Molecular Kinetic Model Incorporating Catalyst Acidity for Hydrocarbon Catalytic Cracking. AIChE Journal 2023, e18060.
2022年
9.Zhang, Y.; Huang, C.; Kong, F.; Wang, Y.; Shi, Q.; Zhang, L.* Selective Molecular Characterization of Olefins in Hydrocarbon Mixtures by Ag+ Complexation ESI High-Resolution Mass Spectrometry. Fuel 2022, 319, 123760.
10.Guo, R.; Bai, X.; Lu, Y.; Zhang, L.-Z.*; Lan, X.-Y.; Chen, Z.-T.; Shi, Q.; Zhao, S.-Q. Hydrogen Solubility Prediction for Diesel Molecules Based on a Modified Henry Equation. Petroleum Science 2022, 19 (1), 363–374.
11.Guan, Y.-M.#; Guan, D.#; Zhang, C.; Yuan, S.-H.; Cai, G.-Q.; Zhang, L.-Z.* Diesel Molecular Composition and Blending Modeling Based on SU-BEM Framework. Petroleum Science 2022, 19 (2), 839–847.
12.Guan, D.; Zhang, L.* Initial Guess Estimation and Fast Solving of Petroleum Complex Molecular Reconstruction Model. AIChE Journal 2022, 68 (10), e17782.
13.Gao, Z.; Xu, Z.; Zhao, S.*; Zhang, L.* Heavy Petroleum Supercritical Fluid Deasphalting Process Simulation Based On the Saturate, Aromatic, Resin, and Asphaltene Composition. Energy Fuels 2022, 36 (16), 8818–8827. (封面論文)
14.Chen, Z.; Yao, X.; Guan, D.; Zhao, S.; Zhang, L.*; Xu, C. Vacuum Residue Coking Process Simulation Using Molecular-Level Kinetic Model Coupled with Vapor-Liquid Phase Separation. Chinese Journal of Chemical Engineering 2022, 41, 301–310.
15.Chen, Z.; Wang, G.*; Zhao, S.; Zhang, L.* Prediction of Molecular Distribution and Temperature Profile of FCC Process through Molecular-Level Kinetic Modeling. Chemical Engineering Science 2022, 264, 118189.
16.Chen, Z.; Sun, N.; Zhang, L.*; Wang, G.*; Zhao, S.; Gao, J. Molecular-Level Modeling for Naphtha Olefin Reduction in FCC Subsidiary Riser: From Laboratory Reactor to Pilot Plant. Chemical Engineering Journal 2022, 437, 135429.
17.Chen, Z.; Guan, D.; Zhang, X.; Zhang, Y.; Zhao, S.; Shi, Q.; Xu, C.; Zhang, L.* A Mass-Temperature Decoupled Discretization Strategy for Large-Scale Molecular-Level Kinetic Model. Chemical Engineering Science 2022, 249, 117348.
18.Cai, G.; Liu, Z.; Zhang, L.* Transformation Rule-Based Molecular Evolution for Automatic Gasoline Molecule Design. Chemical Engineering Science 2022, 263, 118119.
19.Cai, G.-Q.; Zhang, L.-Z.* Systematic Diesel Molecular Performance Evaluation Based on Quantitative Structure-Property Relationship Model. Petroleum Science 2022, 19 (2), 809–818.
20.關(guān)冬;張霖宙*;趙鎖奇;徐春明. 重質(zhì)油穩(wěn)定性的耗散粒子動力學模擬. 化工學報 2022, 73 (10), 4613–4624.(封面論文)
2021年
21.Zhang, L.; Chen, P.; Pan, S.; Liu, F.; Pauchard, V.; Pomerantz, A. E.; Banerjee, S.; Yao, N.; Mullins, O. C.* Structure–Dynamic Function Relations of Asphaltenes. Energy Fuels 2021, 35 (17), 13610–13632.
22.Yang, M.; Zhang, L.*; Wang, G.*; Chen, Z.; Han, J.; Gao, C.; Gao, J. Fischer-Tropsch Wax Catalytic Cracking for the Production of Low Olefin and High Octane Number Gasoline: Experiment and Molecular Level Kinetic Modeling Study. Fuel 2021, 303, 121226.
23.Ma, J.#; Zhang, L.#; Chen, X.#; Su, R.; Shi, Q.; Zhao, S.; Xu, Q.*; Xu, C. Mass Production of Highly Fluorescent Full Color Carbon Dots from the Petroleum Coke. Chinese Chemical Letters 2021, 32 (4), 1532–1536.
24.Guan, D.; Chen, Z.; Chen, X.; Zhang, Y.; Qi, Q.; Shi, Q.; Zhao, S.; Xu, C.; Zhang, L.* Molecular-Level Heavy Petroleum Hydrotreating Modeling and Comparison with High-Resolution Mass Spectrometry. Fuel 2021, 297, 120792.
25.Chen, Z.; Feng, S.; Zhang, L.*; Wang, G.; Shi, Q.; Xu, Z.; Zhao, S.; Xu, C. Molecular‐level Kinetic Modeling of Heavy Oil Fluid Catalytic Cracking Process Based on Hybrid Structural Unit and Bond‐electron Matrix. AIChE Journal 2021, 67 (1), e17027.
26.Chen, X.; Zhang, Y.; Han, J.; Zhang, L.*; Zhao, S.; Xu, C.; Shi, Q. Direct Nickel Petroporphyrin Analysis through Electrochemical Oxidation in Electrospray Ionization Ultrahigh-Resolution Mass Spectrometry. Energy Fuels 2021, 35 (7), 5748–5757.
27.Cai, G.; Liu, Z.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C. Systematic Performance Evaluation of Gasoline Molecules Based on Quantitative Structure-Property Relationship Models. Chemical Engineering Science 2021, 229, 116077.
2020年
28.Zhang, Y.; Chen, X.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C. Specification of the Nitrogen Functional Group in a Hydrotreated Petroleum Molecule Using Hydrogen/Deuterium Exchange Electrospray Ionization High-Resolution Mass Spectrometry. Analyst 2020, 145 (13), 4442–4451.(封面論文)
29.Chen, X.; Li, H.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C. Direct Sulfur-Containing Compounds Analysis in Petroleum via (+) ESI FT-ICR MS Using HBF4 as Ionization Promoter. Fuel 2020, 278, 118334.
30.Chen, X.; Li, H.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C. CYHPO Oxidation Followed by Methylation for Selective Characterization of Thiophenic and Sulfidic Compounds in Petroleum via ESI FT-ICR MS. Fuel 2020, 265, 116907.
31.張霖宙; 趙鎖奇; 史權(quán); 徐春明*. 石油分子表征與分子層次模型構(gòu)建: 前沿及挑戰(zhàn). 中國科學:化學 2020, 50 (2), 192–203.
2019年
32.Zhang, L.; Zhang, L.*; Xu, Z.; Guo, X.; Xu, C.; Zhao, S.* Viscosity Mixing Rule and Viscosity–Temperature Relationship Estimation for Oil Sand Bitumen Vacuum Residue and Fractions. Energy Fuels 2019, 33 (1), 206–214.
33.Zhang, D.; Zhang, L.*; Fang, X.; Xu, Z.; Sun, X.; Zhao, S.* Enhancement of Mesocarbon Microbead (MCMB) Preparation through Supercritical Fluid Extraction and Fractionation. Fuel 2019, 237, 753–762.
34.Lyu, W.; Zhang, L.*; Li, K.; Wang, G.; Shi, Q.; Zhao, S.; Xu, C.* Average Molecule Construction of Petroleum Fractions Based on 1 H-NMR. AIChE Journal 2019, 65 (1), 270–280.
35.Guan, D.; Feng, S.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C.* Mesoscale Simulation for Heavy Petroleum System Using Structural Unit and Dissipative Particle Dynamics (SU–DPD) Frameworks. Energy Fuels 2019, 33 (2), 1049–1060.
36.Feng, S.; Cui, C.; Li, K.; Zhang, L.*; Shi, Q.; Zhao, S.; Xu, C. Molecular Composition Modelling of Petroleum Fractions Based on a Hybrid Structural Unit and Bond-Electron Matrix (SU-BEM) Framework. Chemical Engineering Science 2019, 201, 145–156.
37.Chen, Z.; Feng, S.; Zhang, L.*; Shi, Q.; Xu, Z.; Zhao, S.; Xu, C. Molecular-Level Kinetic Modelling of Fluid Catalytic Cracking Slurry Oil Hydrotreating. Chemical Engineering Science 2019, 195, 619–630.