
楊鈺龍
研究員/Petroleum Science 副主編
辦公室:新綜合樓北樓A301
郵箱:yulong.yang@cup.edu.cn
個人簡介
楊鈺龍,,2017年4月獲得澳大利亞阿德萊德大學(xué)石油工程專業(yè)博士學(xué)位,,2017年6月至今在中國石油大學(xué)(北京)非常規(guī)油氣科學(xué)技術(shù)研究院工作,。目前主要從事聚合物微球深部調(diào)驅(qū),、CO2驅(qū),、儲層潤濕性,、儲層微粒運移等方面的研究?,F(xiàn)主持國家自然基金青年項目1項及多項橫向課題,。
研究方向
油藏潤濕性,;儲層微粒運移,;界面相互作用;多相多組分流動
教育背景
2012.09-2016.09,,博士,,澳大利亞阿德萊德大學(xué),石油工程
2009.09-2012.06,,碩士,,中國石油大學(xué)(北京),油氣井工程
2005.09-2009.06,,學(xué)士,,中國石油大學(xué)(北京),石油工程
工作經(jīng)歷
2022.07至今,,副研究員,,中國石油大學(xué)(北京)非常規(guī)油氣科學(xué)技術(shù)研究院
2017.06-2022.06,助理研究員,,中國石油大學(xué)(北京)提高采收率研究院
科研項目
[1] 國家自然基金青年項目,,低滲油藏納米聚合物微球與低礦化度水復(fù)合深部調(diào)驅(qū)機(jī)理研究,2019.01-2021.12. (主持)
[2] 頁巖氣水平井井筒完整性失效機(jī)理與控制方法研究,,國家自然聯(lián)合基金重點項目,,2018-2021. (參與)
[3] 低滲/特低滲油藏片狀納米材料-微米自適應(yīng)橋接顆粒協(xié)同控竄-調(diào)流-驅(qū)油理論研究,國家自然基金面上項目,,2022-2025. (參與)
[4] 表面活性劑在致密油藏裂縫-微納米孔隙的多尺度滲析機(jī)理研究,,國家自然基金面上項目,2019-2022. (參與)
[5] 頁巖油儲層納微米孔喉中油-CO2-水多元體系相行為與流動機(jī)制研究,,國家自然基金面上項目,,2021-2024. (參與)
[6] 低滲/特低滲油藏片狀納米材料-微米自適應(yīng)橋接顆粒協(xié)同調(diào)驅(qū)機(jī)理研究,,國家自然基金面上項目,2022-2025. (參與)
[7] 雙親納米流體制備及其提高采收率機(jī)理研究,,中石油創(chuàng)新基金,,2021-2022. (參與)
[8] 強(qiáng)非均質(zhì)礫巖油藏CO2吞吐機(jī)理與方案優(yōu)化研究,中石油戰(zhàn)略合作項目專題任務(wù),,2020-2024. (專題負(fù)責(zé)人)
[9] 低滲/特低滲油藏微/納米功能材料深部調(diào)驅(qū)機(jī)理研究,,中國石油大學(xué)(北京)科研啟動基金,2017-2020. (主持)
[10] CO2驅(qū)氣水交替WAG變比設(shè)計及測試,,中石化勝利油田勘探開發(fā)研究院,,2020.(負(fù)責(zé))
[11] 二氧化碳驅(qū)混相驅(qū)波及物理模擬測試合同,中石化勝利油田勘探開發(fā)研究院,,2020.(負(fù)責(zé))
[12] 單井吞吐注氣物理模擬實驗,,中石化石油勘探開發(fā)研究院,2017-2018.(負(fù)責(zé))
[13] 縫洞型油藏井間氣竄影響因素實驗研究,,中石化石油勘探開發(fā)研究院,,2017-2018.(負(fù)責(zé))
發(fā)表論文
期刊論文
[1] Review on Physical and Chemical Factors Affecting Fines Migration in Porous Media. Water Research, 2022, 214, 118172. (自然指數(shù)期刊,中科院1區(qū)TOP, 2020-2021影響因子: 11.236)
[2] Similarity-based Laboratory study on CO2 huff-n-puff in tight conglomerate cores. Petroleum Science. 2022. (In Press, 中科院1區(qū)TOP, 2020-2021影響因子: 4.090)
[3] Morphology of MoS2 nanosheets and its influence on water/oil interfacial tension: A molecular dynamics study. Fuel, 2022, 312, 122938. (中科院1區(qū)TOP, 2020-2021影響因子: 6.609)
[4] A Novel Polymer Gel with High-Temperature and High-Salinity Resistance for Conformance Control in Carbonate Reservoirs. Petroleum Science. 2022. (In Press,中科院1區(qū)TOP, 2020-2021影響因子: 4.090)
[5] Oil Displacement Performance Using Bilayer-Coating Microspheres. Industrial & Engineering Chemistry Research, 2021, 60(5): 2300-2313. (中科院3區(qū), 2020-2021影響因子: 3.720)
[6] The effect of nanoparticles on reservoir wettability alteration: a critical review. Petroleum Science, 2021, 18, 136-153. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)
[7] Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating. Applied Sciences, 2021, 11(8), 3616. (中科院3區(qū), 2020-2021影響因子: 2.679)
[8] Study on the Impact Pressure of Swirling-Round Supercritical CO2 Jet Flow and Its Influencing Factors. Energies, 2021, 14(1), 106. (中科院3區(qū), 2020-2021影響因子: 3.004)
[9] Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection. Applied Mathematics and Mechanics, 2020, 41(3), 491-506. (中科院1區(qū)TOP, 2020-2021影響因子: 2.866)
[10] Enhanced Oil Recovery Using Oleic Acid-Modified Titania Nanofluids: Underlying Mechanisms and Oil-Displacement Performance. Energy & Fuels, 2020, 34(5), 5813-5822. (中科院3區(qū), 2020-2021影響因子: 3.605)
[11] Kaolinite Detachment from Silica Substrate - Laboratory and Theoretical Study. International Journal of Water and Wastewater Treatment, 2020, 6(3), 1-7.
[12] Synthesis of α-starch based nanogel particles and its application for long-term stabilizing foam in high-salinity, high-temperature and crude oil environment. Journal of Petroleum Science and Engineering, 2020, 191, 107185. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)
[13] Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system. Petroleum Science, 2020, 17(2), 419-433. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)
[14] Study on the plugging performance of bilayer-coating microspheres for in-depth conformance control: experimental study and mathematical modeling. Industrial & Engineering Chemistry Research, 2019, 58(16), 6796-6810. (中科院3區(qū), 2020-2021影響因子: 3.720)
[15] Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77:344-67. (中科院2區(qū), 2020-2021影響因子: 4.284)
[16] Exact Solutions for Nonlinear High Retention-Concentration Fines Migration. Transport in Porous Media, 2017, 119(2):351-372. (中科院3區(qū), 2020-2021影響因子: 3.019)
[17] Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering, 2016, 34:1159-1173. (中科院2區(qū), 2020-2021影響因子: 4.965)
[18] Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59: 123-133. (中科院2區(qū), 2020-2021影響因子: 4.284)
[19] Deep bed and cake filtration of two-size particle suspension in porous media. Journal of Petroleum Science and Engineering, 2015, 126:201210. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)
[20] Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs. International Journal of Coal Geology, 2014, 136:1-16. (中科院1區(qū)TOP, 2020-2021影響因子: 6.806)
[21] Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering, 2014, 122, 534-541. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)
[22] Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Petroleum Science, 2012, 9(3): 363-369. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)
會議論文
[1] A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical Modelling). SPE-179027-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26
[2] Fines Mobilisation by Low-Salinity Water Injection: 3-Point-Pressure Tests. SPE-178947-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26
[3] New Laboratory Method to Assess Formation Damage in Geothermal Wells. SPE-174199-MS. SPE European Formation Damage Conference held in Budapest, Hungary, 2015.06.03-06.05
[4] Modelling of productivity decline in geothermal reservoirs due to fines migrationinduced formation damage. World Geothermal Congress, Melbourne, Australia, 2015.04.19-04.25
[5] Prediction of Productivity Decline in Oil and Gas Wells Due to Fines Migration: Laboratory and Mathematical Modelling. SPE-171475-MS. SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014.10.14-10.16
合作出版專著
[1] Fines Migration in Aquifers and Oilfields: Laboratory and Mathematical Modelling. Flow and Transport in Subsurface Environment (2018): 3-67. (Springer)
[2] New Development of Air and Gas Drilling Technology. In Drilling. 2018, 163 (IntechOpen).
[3] Formation Damage Challenges in Geothermal Reservoirs. In Formation Damage During Improved Oil Recovery (2018): 447-497. (Elsevier)